A Finger Vein Liveness Detection System Based on Multi-Scale Spatial-Temporal Map and Light-ViT Model
Abstract
:1. Introduction
2. Related Research
3. Our Method and System
3.1. Obtaining Short-Term Static Finger Vein Images
3.2. Preprocessing of Video Frames
3.3. Selection of Vein Edge Image Block
3.4. Multi-Scale Spatial–Temporal Map Calculation
3.5. Build Light-ViT Model
4. Experiment and Discussion
4.1. Introduction of Experimental Data
4.2. Model Parameters
4.3. Evaluation Indicators
4.4. Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.F.; Khan, M.A.; Aslam, A.S. Fingerprint matching, spoof and liveness detection: Classification and literature review. Front. Comput. Sci. 2021, 15, 151310. [Google Scholar] [CrossRef]
- Himaga, M.; Kou, K. Finger vein authentication technology and financial applications. In Advances in Biometrics; Springer: London, UK, 2008; pp. 89–105. [Google Scholar]
- Yu, Z.; Qin, Y.; Li, X.; Zhao, C.; Lei, Z.; Zhao, G. Deep learning for face anti-spoofing: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 5609–5631. [Google Scholar] [CrossRef] [PubMed]
- Tome, P.; Vanoni, M.; Marcel, S. On the vulnerability of finger vein recognition to spoofing. In Proceedings of the 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 10–12 September 2014; pp. 1–10. [Google Scholar]
- Krishnan, R. Image Quality Assessment For Fake Biometric Detection: Application To Finger-Vein Images. Int. J. Adv. Res. 2016, 4, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Ke, K. Hitachi Debuts a Smartphone with Vein Recognition Technology in Chinese, Sohu, 2016.10.30. Available online: https://www.sohu.com/a/117647702_122331 (accessed on 3 August 2023).
- Tome, P.; Raghavendra, R.; Busch, C. On the vulnerability of palm vein recognition to spoofing attacks. In Proceedings of the 2015 International Conference on Biometrics (ICB), Phuket, Thailand, 19–22 May 2015; pp. 319–325. [Google Scholar]
- Ramachandra, R.; Busch, C. Presentation Attack Detection Methods for Face Recognition Systems: A Comprehensive Survey. ACM Comput. Surv. 2017, 50, 1–37. [Google Scholar] [CrossRef]
- Rehman, Y.; Po, L.; Liu, M. LiveNet: Improving features generalization for face liveness detection using convolution neural networks. Expert Syst. Appl. 2018, 108, 159–169. [Google Scholar] [CrossRef]
- Hu, M.; Qian, F.; Guo, D.; Wang, X.; He, L.; Ren, F. ETA-rPPGNet: Effective Time-Domain Attention Network for Remote Heart Rate Measurement. IEEE Trans. Instrum. Meas. 2021, 99, 1–12. [Google Scholar] [CrossRef]
- Yu, L.; Du, B.; Hu, X.; Sun, L.; Han, L.; Lv, W. Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing 2021, 423, 135–147. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, X.; Huang, M.; Fu, Y. Simultaneous acquisition of near infrared image of hand vein and pulse for liveness dorsal hand vein identification. Infrared Phys. Technol. 2021, 115, 103688. [Google Scholar] [CrossRef]
- Määttä, J.; Hadid, A.; Pietikäinen, M. Face spoofing detection from single images using micro-texture analysis. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–7. [Google Scholar]
- Chingovska, I.; Anjos, A.; Marcel, S. On the Effectiveness of Local Binary Patterns in Face Anti-spoofing. In Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 6–7 September 2012; pp. 1–7. [Google Scholar]
- Tome, P.; Raghavendra, R.; Busch, C.; Tirunagari, S.; Poh, N.; Shekar, B.H.; Gragnaniello, D.; Sansone, C.; Verdoliva, L.; Marcel, S. The 1st Competition on Counter Measures to Finger Vein Spoofing Attacks. In Proceedings of the 2015 International Conference on Biometrics (ICB), Phuket, Thailand, 19–22 May 2015; pp. 513–518. [Google Scholar]
- Fang, Y.; Wu, Q.; Kang, W. A novel finger vein verification system based on two-stream convolutional network learning. Neurocomputing 2018, 290, 100–107. [Google Scholar] [CrossRef]
- Bok, J.Y.; Suh, K.H.; Lee, E.C. Detecting fake finger-vein data using remote photoplethysmography. Electronics 2019, 8, 1016. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.-L.; Chen, S.-C.; Iyengar, S.S. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Assim, O.M.; Alkababji, A.M. CNN and genetic algorithm for ginger vein recognition. In Proceedings of the 2021 14th International Conference on Developments in eSystems Engineering (DeSE), Sharjah, United Arab Emirates, 7–10 December 2021; pp. 503–508. [Google Scholar]
- Baweja, Y.; Oza, P.; Perera, P.; Patel, V.M. Anomaly detection-based unknown face presentation attack detection. In Proceedings of the 2020 IEEE International Joint Conference on Biometrics (IJCB), Houston, TX, USA, 28 September–1 October 2020; pp. 1–9. [Google Scholar]
- Zeng, J.; Wang, F.; Deng, J.; Qin, C.; Zhai, Y.; Gan, J.; Piuri, V. Finger vein verification algorithm based on fully convolutional neural network and conditional random field. IEEE Access 2020, 8, 65402–65419. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, H.; Hu, Y.; Han, Y.; Lin, S.; Liu, Y. DGLFV: Deep generalized label algorithm for finger-vein recognition. IEEE Access 2021, 9, 78594–78606. [Google Scholar] [CrossRef]
- Gionfrida, L.; Rusli, W.M.R.; Kedgley, A.E.; Bharath, A.A. A 3DCNN-LSTM Multi-Class Temporal Segmentation for Hand Gesture Recognition. Electronics 2022, 11, 2427. [Google Scholar] [CrossRef]
- Sandouka, S.B.; Bazi, Y.; Alajlan, N. Transformers and Generative Adversarial Networks for Liveness Detection in Multitarget Fingerprint Sensors. Sensors 2021, 21, 699. [Google Scholar] [CrossRef]
- Adam, E.E.B.; Sathesh, A. Evaluation of Fingerprint Liveness Detection by Machine Learning Approach—A Systematic View. IRO J. 2021, 3, 16–30. [Google Scholar]
- Zhou, L.; Yang, L.; Fu, D.; Yang, G. SIFT-Flow-Based Virtual Sample Generation for Single-Sample Finger Vein Recognition. Electronics 2022, 11, 3382. [Google Scholar] [CrossRef]
- Kono, M.; Ueki, H.; Umemura, S. Near infrared finger vein patterns for personal identification. Appl. Opt. 2002, 41, 7429–7436. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X. Feature-level fusion of fingerprint and finger vein for personal identification. Pattern Recognit. Lett. 2012, 33, 623–628. [Google Scholar] [CrossRef]
- Sengar, S.S.; Susanta, M. Foreground Detection via Background Subtraction and Improved Three-Frame Differencing. Arab. J. Sci. Eng. 2017, 42, 3621–3633. [Google Scholar] [CrossRef]
- Sarwar, S.S.; Panda, P.; Roy, K. Gabor filter assisted energy efficient fast learning Convolutional Neural Networks. In Proceedings of the 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6. [Google Scholar]
- Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichman, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv 2018, arXiv:1811.12231. [Google Scholar]
- Boughida, A.; Kouahla, M.N.; Lafifi, Y. A novel approach for facial expression recognition based on Gabor filters and genetic algorithm. Evol. Syst. 2022, 13, 331–345. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- ISO/IEC 30107-3-2017; Information Technology—Biometric Presentation Attack Detection—Part 3: Testing and Reporting. Available online: https://www.iso.org/standard/53227.html (accessed on 7 August 2023).
- Lin, B.; Li, X.; Yu, Z.; Zhao, G. Face liveness detection by rppg features and contextual patch-based CNN. In Proceedings of the 2019 3rd International Conference on Biometric Engineering and Applications, Stockholm, Sweden, 29–31 May 2019; pp. 61–68. [Google Scholar]
- Park, K.R. Finger vein recognition by combining global and local features based on SVM. Comput. Inform. 2011, 30, 295–309. [Google Scholar]
- Song, J.M.; Kim, W.; Park, K.R. Finger-vein recognition based on deep DenseNet using composite image. IEEE Access 2019, 7, 66845–66863. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
Experimental Method | ACR | APCER | BPCER |
---|---|---|---|
LBP + WLD | 0.7875 | 0.325 | 0.2861 |
EVM + MPR | 0.8292 | 0.2083 | 0.1583 |
DFT + SVM | 0.9104 | 0.0833 | 0.0917 |
MSTmap + Light-ViT | 0.9963 | 0 | 0.0037 |
Network Name | ACR | APCER | BPCER |
---|---|---|---|
VGG16 | 0.9247 | 0.0803 | 0.0712 |
ResNet50 | 0.9687 | 0.0364 | 0.0367 |
ViT | 0.9722 | 0.0294 | 0.0299 |
MobileNetV2 | 0.9725 | 0.0281 | 0.0307 |
Light-ViT | 0.9963 | 0 | 0.0037 |
Network Name | Total Params (M) | Params Size (MB) | GFLOPS (M) |
---|---|---|---|
VGG-16 | 134.269 | 512.19 | 30,932 |
ResNet | 23.512 | 89.69 | 8263 |
ViT | 85.648 | 326.72 | 33,726 |
MobileNetV2 | 2.226 | 8.49 | 652.419 |
Light-ViT | 1.107 | 4.22 | 690.217 |
Network Structure | ACR | APCER | BPCER |
---|---|---|---|
Basenet | 0.9090 | 0.0928 | 0.1005 |
Basenet + L-ViT block | 0.9809 | 0.0147 | 0.0239 |
Basenet + bottleneck | 0.9287 | 0.0603 | 0.0716 |
Basenet + all | 0.9963 | 0 | 0.0037 |
Dataset | Amount (Picture) | Class | Proportions |
---|---|---|---|
MFVD | 17,280 | 288 | 8:2 |
FV-USM | 23,616 | 492 | 8:2 |
VERA | 14,080 | 220 | 8:2 |
Network Structure | ACR | ||
---|---|---|---|
MFVD | VERA | FV-USM | |
VGG16 | 0.9588 | 0.9172 | 0.9285 |
ResNet50 | 0.9687 | 0.9426 | 0.9428 |
ViT-16 | 0.9699 | 0.9359 | 0.9471 |
MobileNetV2 | 0.9684 | 0.9428 | 0.9452 |
Light-ViT | 0.9881 | 0.9612 | 0.9702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Guo, T.; Li, L.; Jiang, H.; Luo, W.; Li, Z. A Finger Vein Liveness Detection System Based on Multi-Scale Spatial-Temporal Map and Light-ViT Model. Sensors 2023, 23, 9637. https://doi.org/10.3390/s23249637
Chen L, Guo T, Li L, Jiang H, Luo W, Li Z. A Finger Vein Liveness Detection System Based on Multi-Scale Spatial-Temporal Map and Light-ViT Model. Sensors. 2023; 23(24):9637. https://doi.org/10.3390/s23249637
Chicago/Turabian StyleChen, Liukui, Tengwen Guo, Li Li, Haiyang Jiang, Wenfu Luo, and Zuojin Li. 2023. "A Finger Vein Liveness Detection System Based on Multi-Scale Spatial-Temporal Map and Light-ViT Model" Sensors 23, no. 24: 9637. https://doi.org/10.3390/s23249637
APA StyleChen, L., Guo, T., Li, L., Jiang, H., Luo, W., & Li, Z. (2023). A Finger Vein Liveness Detection System Based on Multi-Scale Spatial-Temporal Map and Light-ViT Model. Sensors, 23(24), 9637. https://doi.org/10.3390/s23249637