Research on the Surface Deformation, Fault Rupture, and Coseismic Geohazard of the 2022 Luding Mw 6.8 Earthquake
Abstract
:1. Introduction
2. Regional Tectonic Background
3. InSAR Coseismic Deformation Field of the Luding Earthquake
4. Inversion of the Fault Rupture Model of the Luding Earthquake
4.1. De-Resample of InSAR Deformation
4.2. Search for Best-Fitting Fault Geometric Parameters
4.3. Inversion of Fault Slip Distribution
4.4. Forward Modeling and Residual Analysis of the InSAR Deformation Field
5. Identification of the Coseismic Geohazards
5.1. Pixel Offset Tracking Deformation Extraction
5.2. Analysis of the Coseismic POT Results
5.3. Coseismic Geohazard Verification
5.4. Analysis of Detected Coseismic Hazards
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Fang, C.Y.; Tang, X.C.; Dai, L.X.; Fan, X.M.; Xu, Q. Research on Emergency Evaluation of Landslides Induced by the Luding Ms 6.8 Earthquake. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 25–35. [Google Scholar]
- Li, W.; Chen, J.; Lu, H.; Shan, Y.; Li, Z.; Chen, B.; Wu, L.; Xu, Z.; Li, W.; Zhang, P.; et al. Emergency analysis of the impact of the Luding Ms 6.8 earthquake on Hailuogou glacier. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 47–57. [Google Scholar]
- Wang, X.M.; Yu, H.S.; Pei, X.Y. Application and Results of Statistic Hazard Data about the 1955 M7.5 kangding Earthquake. Earthq. Res. Sichuan 1996, 03, 57–64. [Google Scholar]
- Zhao, Y.F.; Zhu, Y.Q.; Liang, W.F.; Xu, Y.M.; Guo, S.S.; Liu, F.; Liu, L. Simulation of Coseismic Gracity Change and Deformation for 2010 QinghaiYushu Earthquake. J. Geod. Geodyn. 2014, 34, 26–31. [Google Scholar]
- Yang, J.B.; Zhao, B.; Du, R.L.; Yu, J.S.; Wang, D.Z. Study on Rupture Models and Triggering Relationships of the 1923 Renda Earthquake and the 1973 Luhuo Earthquake. J. Geod. Geodyn. 2020, 40, 783–789. [Google Scholar]
- Liu, K.; Li, Y.F.; Guo, H.W.; Zhang, Y.F. Determination of surface rupture length and analysis of Riedel shearstructure of the Litang M7.3 earthquake in west Sichuan in 1948. Acta Geol. Sin. 2021, 95, 2346–2360. [Google Scholar]
- Fan, X.; Wang, X.; Dai, L.; Fang, C.; Deng, Y.; Zou, C.; Tang, M.; Wei, Z.; Dou, X.; Zhang, J.; et al. Characteristics and spatial distribution pattern of M S 6.8 Luding earthquake occurred on 5 September 2022. J. Eng. Geol. 2022, 30, 1504–1516. [Google Scholar]
- Bai, M.K.; Chevalier, M.L.; Li, H.B.; Pan, J.W.; Wu, Q.; Wang, S.G.; Liu, F.C.; Jiao, L.Q.; Zhang, L.; Gong, Z. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault. Acta Geol. Sin. 2022, 96, 2312–2332. [Google Scholar]
- Sun, K. Crustal Deformation Characteristics of the Xianshuihe Fault from InSAR and GNSS Observations; Institute of Earthquake Forecasting (IEF) of the China Earthquake Administration (CEA): Beijing, China, 2021. (In Chinese) [Google Scholar]
- Qiao, X.; Zhou, Y. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth Planet. Sci. Lett. 2020, 567, 117001. [Google Scholar] [CrossRef]
- Pan, J.W.; Li, H.B.; Chevalier, M.; Bai, M.K.; Liu, F.C.; Liu, D.L.; Zheng, Y.; Lu, H.J.; Zhao, Z.B. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: The South Mugecuo fault. Acta Geol. Sin. 2020, 94, 3178–3188. [Google Scholar]
- Wang, M.J.; Li, T.B.; Meng, L.B. Back analysis of stress field in the intersection region of Y shaped fault, Sichuan. J. Rail Way Sci. Eng. 2015, 12, 1088–1095. [Google Scholar]
- Qian, H.; Allen, C.R.; Luo, Z.L.; Wen, X.Z.; Zhou, H.W.; Huang, W.S. The Active Chararteristics of Xianshuihe Fault in Holocene. Earthq. Res. China 1988, 4, 11–20. [Google Scholar]
- Wen, X.Z. Character of Rupture Segmentation of The Xianshuihe-Anninghe-Zemuhe Fault Zone, Western Sichuan. Seismol. Geol. 2000, 22, 239–249. [Google Scholar]
- Liang, M.J.; Chen, L.C.; Ran, Y.K.; Li, Y.B.; Gao, S.P.; Han, M.M.; Lu, L.L. Abnormal accelerating stress release behavior on the Luhuo segment of the Xianshuihe fault, southeastern margin of the Tibetan Plateau, during the past 3000 years. Front. Earth Sci. 2020, 8, 274. [Google Scholar] [CrossRef]
- Meng, G.J.; Ren, J.W.; Wang, M.; Gan, W.J.; Wang, Q.; Qiao, X.J.; Yang, Y.L. Crustal deformation in western Sichuan region and implications for 12 May 2008 Ms 8.0 earthquake. Geochem. Geophys. Geosystems 2008, 9, 7. [Google Scholar] [CrossRef]
- Feng, G.; Hetland, E.A.; Ding, X.; Li, Z.; Zhang, L. Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophys. Res. Lett. 2010, 37, L01302. [Google Scholar] [CrossRef]
- Mathew, J.; Majumdar, R.; Kumar, K.V. SAR interferometry and optical remote sensing for analysis of co-seismic deformation, source characteristics and mass wasting pattern of Lushan (China, April 2013) earthquake. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 338–349. [Google Scholar] [CrossRef]
- Shen, W.H.; Luo, Y.; Jiao, Q.S. Estimation of Static Coulomb Stress Change and Strong Motion Simulation for Jiuzhaigou 7.0 Earthquake Base on SENTINEL-1 Insar Data Inversion. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1533–1537. [Google Scholar] [CrossRef]
- Parsons, T.; Ji, C.; Kirby, E. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature 2008, 454, 509–510. [Google Scholar] [CrossRef]
- Shan, B.; Xiong, X.; Zheng, Y.; Jin, B.K.; Liu, C.L.; Xie, Z.J.; Hsu, H.T. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake. Chin. Sci. Earth Sci. 2013, 56, 1169–1176. [Google Scholar] [CrossRef]
- Liu, G.X.; Chen, Q.; Luo, X.J.; Cai, G.L. Principle and Application of InSAR; Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- The GAMMA-2020 Software Is a Commercial Software Developed and Maintained by GAMMA Remote Sensing Research and Consulting AG. Available online: https://www.gamma-rs.ch/software (accessed on 13 October 2020).
- Hu, B.; Wang, H.S.; Shen, Q.; Jiang, L.M. Coseismic displacements field of the BAM earthquake inferred from InSAR. J. Inf. Comput. Sci. 2012, 9, 2537–2544. [Google Scholar]
- Li, Y.S.; Feng, W.P.; Zhang, J.F.; Li, Z.H.; Tian, Y.F.; Jiang, W.L.; Luo, Y. Coseismic slip of the 2014 M(w)6.1 Napa, California Earthquake revealed by Sentinel-1A InSAR. Chin. J. Geophys. 2015, 58, 2339–2349. [Google Scholar]
- Ji, L.Y.; Liu, C.J.; Xu, J.; Liu, L.; Long, F.; Zhang, Z.W. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou M(S)7. 0 earthquake in China. Chin. J. Geophys. 2017, 60, 4069–4082. [Google Scholar]
- Okada, Y. Surface deformation due to shear and tensile faults in ahalf-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Clarke, P.J.; Paradissis, D.; Briole, P.; England, P.C.; Parsons, B.E.; Billiris, H.; Veis, G.; Ruegg, J.C. Geodetic investigation of the 13 May 1995 Kozani-Grevena (Greece) earthquake. Geophys. Res. Lett. 1997, 24, 707–710. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Tsai, M.-C.; Hu, J.-C.; Aurelio, M.A.; Hashimoto, M.; Escudero, J.A.P.; Su, Z.; Chen, Q. Coseismic slip deficit of the 2017 Mw 6.5 Ormoc earthquake that occurred along a creeping segment and geothermal field of the Philippine fault. Geophys. Res. Lett. 2018, 45, 2659–2668. [Google Scholar] [CrossRef]
- Yang, Y.H.; Chen, Q.; Xu, Q.; Liu, G.X.; Hu, J.C. Source model and Coulomb stress change of the 2015 Mw 7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations. J. Geod. 2019, 93, 333–351. [Google Scholar] [CrossRef]
- Jónsson, S.; Zebker, H.; Segall, P.; Amelung, F. Fault slip distribution of the 1999 M w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Weston, J.; Ferreira, A.M.; Funning, G.J. Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics 2012, 532, 61–81. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Shan, X.; Gao, Z.; Huang, X.; Gong, W. Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre-and Post-Earthquake Interactions With Surrounding Major Faults. Geophys. Res. Lett. 2022, 49, e2022GL102043. [Google Scholar] [CrossRef]
- Han, B.; Liu, Z.; Chen, B.; Li, Z.; Yu, C.; Zhang, Y.; Peng, J. Coseismic deformation and slip distribution of the 2022 Luding Mw 6.6 earthquake revealed by InSAR observations. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 36–46. [Google Scholar]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Liu, G.X.; Zhang, B.; Zhang, R.; Cai, J.L.; Fu, Y.; Liu, Q.; Yu, B.; Li, Z.L. Monitoring dynamics of Hailuogou glacier and the secondary landslide disasters based on combination of satellite SAR and ground-based SAR. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 980–995. [Google Scholar]
- Zhang, S.P.; Zhou, Z.Z.; Zhao, L.J.; Zhang, Y.Y. Extraction of Gangnalou glacier velocity based on SAR migration tracking method. Bull. Surv. Mapp. 2020, 11, 33–38. [Google Scholar]
- Li, S.Y. PO-SBAS Model Based on Baseline Combination Optimization for Extracting Bugyai Kangri Glacier; Southwest Jiaotong University: Chengdu, China, 2020; pp. 19–25. [Google Scholar]
- Chen, Q.; Luo, R.; Yang, Y.H.; Yong, Q. Method and Accuracy of Extracting Surface Deformation Field from SAR Image Coregistration. Acta Geod. Cartogr. Sin. 2015, 44, 301–308. [Google Scholar]
- Dong, J.H.; Yang, C.S.; Zhang, B.H.; Zhao, C.Y. Typical Glacier Displacement Monitoring of Gyala Peri Based on SAR Offset Tracking Technology. J. Gansu Sci. 2021, 33, 1–7. [Google Scholar]
- Song, H.F. Monitoring and Application of Regional Landslide Time Series Deformation Based on Optical and SAR Image Offset Tracking; Guangzhou University: Guangzhou, China, 2021; pp. 16–20. [Google Scholar]
- Li, W.L. Distribution Pattern and Post-Earthquake Effect of Coseismic Landslides of Strong Earthquakes; Chengdu University of technology: Chengdu, China, 2019; pp. 1–6. [Google Scholar]
- Zou, Y.; Qi, S.W.; Guo, S.F.; Zheng, B.W.; Zhan, Z.F.; He, N.W.; Huang, X.L.; Hou, X.K.; Liu, H.Y. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China. Eng. Geol. 2022, 296, 106477. [Google Scholar] [CrossRef]
Flight Direction | Tracks | Main Image Data (Day-Month-Year) | Secondary Image Data (Day-Month-Year) | Time Baseline (d) | Vertical Baseline (m) |
---|---|---|---|---|---|
Ascending | 26 | 26-08-2022 | 07-09-2022 | 12 | −202.423 |
Descending | 135 | 02-09-2022 | 14-09-2022 | 12 | −50.421 |
Parameter Source | Strike Angle (°) | Dip Angle (°) | Average Rake Angle (°) | Mw |
---|---|---|---|---|
USGS | 345 | 88 | 17 | 6.64 |
GCMT | 163 | 80 | 8 | 6.70 |
This paper | 169.3 | 70 | −8.5 | 6.72 |
Comparison Objects | Character | Mw | Fault Rupture Range | Strike Angle | Dip Angle | Seismogenic Fault Length | Maximum Slip Magnitude/Depth |
---|---|---|---|---|---|---|---|
This paper | Left-lateral strike | 6.72 | 3–12 km | 169.3° | 70° | ~21 km | 2.67 m/7 km |
Li Yanchuan et al. (2022) [33] | Left-lateral strike | 6.74 | <10 km | 162° | 79° | ~30 km | 1.8 m/7 km |
Han Bingquan et al. (2023) [34] | Left-lateral strike | 6.59 | 0–10 km | 167° | 72° | ~30 km | 2.23 m/5.8 km |
POT Result Type | POT of Ascending Counts of Geohazards | POT of Ascending Counts of Geohazards |
---|---|---|
Azimuth | 139 | 81 |
LOS | 110 | 63 |
Repetition | 93 | 55 |
Single track | 156 | 89 |
Both tracks | 245 |
POT Result Type | POT of Ascending Counts of Geohazards | POT of Ascending Counts of Geohazards |
---|---|---|
Out of range | 52 | 38 |
Within range | 104 | 51 |
Verified | 74 | 33 |
Covered by cloud | 17 | 12 |
No obvious trace | 13 | 6 |
Verification Type | Ascending POT (%) | Descending POT (%) |
---|---|---|
Verified | 71.2 | 64.7 |
Covered by cloud | 16.3 | 23.5 |
No obvious trace | 12.5 | 11.8 |
Geohazard Identification Type | Ascending POT (%) | Descending POT (%) |
---|---|---|
Glacier slides | 3.2 | 3.4 |
High mountain rupture | 17.3 | 24.7 |
Coastal landslides | 79.5 | 71.9 |
LOS direction | 89.1 | 91.0 |
Azimuth direction | 70.5 | 70.7 |
Repetitions in LOS and azimuth directions | 59.6 | 61.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Yang, Y.; Zeng, L.; Xu, W.; Song, J.; Li, X. Research on the Surface Deformation, Fault Rupture, and Coseismic Geohazard of the 2022 Luding Mw 6.8 Earthquake. Sensors 2023, 23, 9875. https://doi.org/10.3390/s23249875
Lu Y, Yang Y, Zeng L, Xu W, Song J, Li X. Research on the Surface Deformation, Fault Rupture, and Coseismic Geohazard of the 2022 Luding Mw 6.8 Earthquake. Sensors. 2023; 23(24):9875. https://doi.org/10.3390/s23249875
Chicago/Turabian StyleLu, Yiling, Yinghui Yang, Li Zeng, Wanfu Xu, Jiawei Song, and Xiaoyun Li. 2023. "Research on the Surface Deformation, Fault Rupture, and Coseismic Geohazard of the 2022 Luding Mw 6.8 Earthquake" Sensors 23, no. 24: 9875. https://doi.org/10.3390/s23249875
APA StyleLu, Y., Yang, Y., Zeng, L., Xu, W., Song, J., & Li, X. (2023). Research on the Surface Deformation, Fault Rupture, and Coseismic Geohazard of the 2022 Luding Mw 6.8 Earthquake. Sensors, 23(24), 9875. https://doi.org/10.3390/s23249875