Amount Estimation Method for Food Intake Based on Color and Depth Images through Deep Learning
Abstract
:1. Introduction
2. Related Works on Amount Estimation for Food Intake
3. Amount Estimation for Food Intake Based on Color and Depth Images
3.1. Detections of Foods and Meal Plate through Deep-Learning Object Detector
3.2. Image Transformation and Correction for Food Intake Amount Estimation
3.3. Food Intake Amount Estimation Based on Depth Image
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westerterp, K.R.; Goris, A.H. Validity of The Assessment of Dietary Intake: Problems of Misreporting. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Liu, S.Y.; Chu, H.H.; Hsu, J.Y.J.; Chen, C.; Lin, T.Y.; Chen, C.Y.; Huang, P. The Diet-aware Dining Table: Observing Dietary Behaviors over A Tabletop Surface. In Proceedings of the 4th International Conference on Pervasive Computing, Dublin, Ireland, 7–10 May 2006; pp. 366–382. [Google Scholar]
- Zhou, B.; Cheng, J.; Sundholm, M.; Reiss, A.; Huang, W.; Amft, O.; Lukowicz, P. Smart Table Surface: A Novel Approach to Pervasive Dining Monitoring. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), St. Louis, MO, USA, 23–27 March 2015. [Google Scholar]
- Olubanjo, T.; Moore, E.; Ghovanloo, M. Detecting Food Intake Acoustic Events in Noisy Recordings Using Template Matching. In Proceedings of the International Conference on Biomedical and Health Informatics, Las Vegas, NV, USA, 25–27 February 2016. [Google Scholar]
- Thomaz, E.; Essa, I.; Abowd, G.D. A Practical Approach for Recognizing Eating Moments with Wrist-mounted Inertial Sensing. In Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015. [Google Scholar]
- Shaoqing, R.; Kaiming, H.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Elbassuoni, S.; Ghattas, H.; Ati, J.E.; Shmayssani, Z.; Katerji, S.; Zoughbi, Y.; Semaan, A.; Akl, C.; Gharbia, H.B.; Sassi, S. DeepNOVA: A Deep Learning NOVA Classifier for Food Images. IEEE Access 2022, 10, 128523–128535. [Google Scholar] [CrossRef]
- Tiankaew, U.; Chunpongthong, P.; Mettanant, V. A Food Photography App with Image Recognition for Thai Food. In Proceedings of the Seventh ICT International Student Project Conference, Nakhonpathom, Thailand, 11–13 July 2018. [Google Scholar]
- Mezgec, S.; Seljak, B.K. Using Deep Learning for Food and Beverage Image Recognition. In Proceedings of the IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019. [Google Scholar]
- Islam, M.T.; Siddique, B.M.K.; Rahman, S.; Jabid, T. Food Image Classification with Convolutional Neural Network. In Proceedings of the International Conference on Intelligent Informatics and Biomedical Sciences, Bangkok, Thailand, 21–24 October 2018. [Google Scholar]
- Wang, Y.; Wu, J.; Deng, H.; Zeng, X. Food Image Recognition and Food Safety Detection Method Based on Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 1268453. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Yanai, K. An Automatic Calorie Estimation System of Food Images on A Smartphone. In Proceedings of the International Workshop on Multimedia Assisted Dietary Management, Amsterdam, The Netherlands, 16 October 2016. [Google Scholar]
- Hippocrate, E.; Suwa, H.; Arakawa, Y.; Yasumoto, K. Food Weight Estimation Using Smartphone and Cutlery. In Proceedings of the Annual International Conference on Mobile Systems, Applications, and Services, Singapore, 25–30 June 2016. [Google Scholar]
- Jia, W.; Ren, Y.; Li, B.; Beatrice, B.; Que, J.; Cao, S.; Wu, Z.; Mao, Z.H.; Lo, B.; Anderson, A.K.; et al. A Novel Approach to Dining Bowl Reconstruction for Image-Based Food Volume Estimation. Sensors 2022, 22, 1493. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, J.; Sun, W.; Wei, Z.; Liu, A.; Gong, W.; Yang, Y. Food Volume Estimation Based on Reference. In Proceedings of the International Conference on Innovation in Artificial Intelligence, Xiamen, China, 8–11 May 2020. [Google Scholar]
- Smith, S.P.; Adam, M.T.P.; Manning, G.; Burrows, T.; Collins, C.; Rollo, M.E. Food Volume Estimation by Integrating 3D Image Projection and Manual Wire Mesh Transformations. IEEE Access 2022, 10, 48367–48378. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, D.S.; Kwon, S.K. Food Classification and Meal Intake Amount Estimation through Deep Learning. Appl. Sci. 2023, 13, 5742. [Google Scholar] [CrossRef]
- Fang, S.; Liu, C.; Zhu, F.; Delp, E.J.; Boushey, C.J. Single-view Food Portion Estimation Based on Geometric Models. In Proceedings of the IEEE International Symposium on Multimedia, Miami, FL, USA, 14–16 March 2015. [Google Scholar]
- Yue, Y.; Jia, W.; Sun, M. Measurement of Food Volume Based on Single 2-D Image without Conventional Camera Calibration. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Steinbrener, J.; Dimitrievska, V.; Pittino, F.; Starmans, F.; Waldner, R.; Holzbauer, J.; Arnold, T. Learning Metric Volume Estimation of Fruits and Vegetables from Short Monocular Video Sequences. Heliyon 2023, 9, e14722. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; Zhang, Q. Application of Consumer RGB-D Cameras for Fruit Detection and Localization in Field: A Critical Review. Comput. Electron. Agric. 2020, 177, 105687. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Jiang, H.; Mao, W.; Li, R.; Andriyanov, N.; Soloviev, V.; Fu, L. NDMFCS: An Automatic Fruit Counting System in Modern Apple Orchard Using Abatement of Abnormal Fruit Detection. Comput. Electron. Agric. 2023, 211, 108036. [Google Scholar] [CrossRef]
- Andriyanov, N. Development of Apple Detection System and Reinforcement Learning for Apple Manipulator. Electronics 2023, 12, 727. [Google Scholar] [CrossRef]
- Neupane, C.; Koirala, A.; Wang, Z.; Walsh, K.B. Evaluation of Depth Cameras for Use in Fruit Localization and Sizing: Finding a Successor to Kinect v2. Agronomy 2021, 11, 1780. [Google Scholar] [CrossRef]
- Lu, Y.; Stathopoulou, T.; Vasiloglou, M.F.; Christodoulidis, S.; Blum, B.; Walser, T.; Meier, V.; Stanga, Z.; Mougiakakou, S. An Artificial Intelligence-Based System for Nutrient Intake Assessment of Hospitalised Patients. IEEE Trans. Multimed. 2020, 23, 1136–1147. [Google Scholar] [CrossRef]
- Myers, A.; Johnston, N.; Rathod, V.; Korattikara, A.; Gorban, A.; Silberman, N.; Guadarrama, S.; Papandreou, G.; Huang, J.; Murphy, K. Im2Calories: Towards an Automated Mobile Vision Food Diary. In Proceeding of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Bándi, N.; Tunyogi, R.B.; Szabó, Z.; Farkas, E.; Sulyok, C. Image-Based Volume Estimation Using Stereo Vision. In Proceedings of the IEEE International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 17–19 September 2020. [Google Scholar]
- Okinda, C.; Sun, Y.; Nyalala, I.; Korohou, T.; Opiyo, S.; Wang, J.; Shen, M. Egg Volume Estimation Based on Image Processing and Computer Vision. J. Food Eng. 2020, 283, 110041. [Google Scholar] [CrossRef]
- Lo, F.P.W.; Sun, Y.; Qiu, J.; Lo, B. Food Volume Estimation Based on Deep Learning View Synthesis from a Single Depth Map. Nutrients 2018, 10, 2005. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Futatsuishi, K.; Yokoyama, K.; Amaki, N. Point Cloud Processing Method for Food Volume Estimation Based on Dish Space. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Ando, Y.; Ege, T.; Cho, J.; Yanai, K. Depthcaloriecam: A Mobile Application for Volume-Based Foodcalorie Estimation Using Depth Cameras. In Proceeding of the International Workshop on Multimedia Assisted Dietary Management, New York, NY, USA, 21 October 2019. [Google Scholar]
- SrirangamSridharan, S.; Ulutan, O.; Priyo, S.N.T.; Rallapalli, S.; Srivatsa, M. Object Localization and Size Estimation from RGB-D Images. arXiv 2018, arXiv:1808.00641. [Google Scholar]
- Anwer, A.; Baig, A.; Nawaz, R. Calculating Real World Object Dimensions from Kinect RGB-D Image Using Dynamic Resolution. In Proceedings of the International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 13–17 January 2015; pp. 198–203. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shamos, M. Computational Geometry. Ph.D. Thesis, Yale University, New Haven, CT, USA, May 1978. [Google Scholar]
- Hartley, R.; Zisserman, A. Camera Models, in Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: New York, NY, USA, 2000; pp. 153–177. [Google Scholar]
- YOLOv8. Available online: https://github.com/ultralytics/ultralytics (accessed on 18 January 2024).
Target | Shape | Size | Volume |
---|---|---|---|
(a) | cuboid | l: 12.4 cm, w: 12.6 cm, h: 7.5 cm | 1171.80 cm3 |
(b) | cuboid | l: 25.0 cm, w: 25.0 cm, h: 5.0 cm | 3125.00 cm3 |
(c) | cuboid | l: 20.0 cm, w: 30.0 cm, h: 7.0 cm | 4200.00 cm3 |
(d) | cylinder | r: 4.6 cm, h: 13.2 cm | 877.48 cm3 |
(e) | cylinder | r: 6.6 cm, h: 16.8 cm | 2299.04 cm3 |
Target | Estimation Volume | Error Rate |
---|---|---|
(a) | 1166.53 cm3 | 0.45% |
(b) | 3087.40 cm3 | 1.20% |
(c) | 4161.97 cm3 | 0.91% |
(d) | 873.89 cm3 | 0.41% |
(e) | 2282.83 cm3 | 0.71% |
Food Name | Actual Amount cm3 | Estimated Intake Amount cm3 (Error Rate %) | |||
---|---|---|---|---|---|
Pre-Meal | Post-Meal | Food Intake | [19] | Proposed Method | |
kimchi | 90.0 | 75.0 | 15.0 | 14.1 (6.0) | 15.2 (1.3) |
dried radish | 105.0 | 90.0 | 15.0 | 13.7 (8.7) | 14.8 (1.3) |
fried anchovies | 30.0 | 15.0 | 15.0 | 14.6 (2.7) | 15.3 (2.2) |
spicy squid | 90.0 | 60.0 | 30.0 | 28.5 (5.0) | 29.7 (1.0) |
sausage | 42.4 | 21.2 | 21.2 | 19.1 (9.9) | 20.8 (1.9) |
water | 200.0 | 100.0 | 100.0 | 75.3 (24.7) | 99.1 (0.9) |
water | 300.0 | 100.0 | 200.0 | 123.1 (38.5) | 198.3 (0.8) |
Target | Food Name | Estimation Amount | ||
---|---|---|---|---|
Pre-Meal | 30% Intake | 60% Intake | ||
Meal 1 | rice | 390 cm3 | 169 cm3 | 308 cm3 |
fish cake soup | 270 cm3 | 67 cm3 | 146 cm3 | |
meatball | 50 cm3 | 19 cm3 | 36 cm3 | |
fried anchovies | 40 cm3 | 16 cm3 | 29 cm3 | |
kimchi | 45 cm3 | 21 cm3 | 34 cm3 | |
stir-fried pork | 175 cm3 | 46 cm3 | 112 cm3 | |
Meal 2 | rice | 308 cm3 | 127 cm3 | 217 cm3 |
spicy beef soup | 308 cm3 | 113 cm3 | 218 cm3 | |
braised lotus roots | 50 cm3 | 25 cm3 | 35 cm3 | |
kimchi | 50 cm3 | 20 cm3 | 37 cm3 | |
egg-dipped sausage | 50 cm3 | 14 cm3 | 24 cm3 | |
fried squash | 40 cm3 | 11 cm3 | 23 cm3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-s.; Kwon, S.-k. Amount Estimation Method for Food Intake Based on Color and Depth Images through Deep Learning. Sensors 2024, 24, 2044. https://doi.org/10.3390/s24072044
Lee D-s, Kwon S-k. Amount Estimation Method for Food Intake Based on Color and Depth Images through Deep Learning. Sensors. 2024; 24(7):2044. https://doi.org/10.3390/s24072044
Chicago/Turabian StyleLee, Dong-seok, and Soon-kak Kwon. 2024. "Amount Estimation Method for Food Intake Based on Color and Depth Images through Deep Learning" Sensors 24, no. 7: 2044. https://doi.org/10.3390/s24072044
APA StyleLee, D. -s., & Kwon, S. -k. (2024). Amount Estimation Method for Food Intake Based on Color and Depth Images through Deep Learning. Sensors, 24(7), 2044. https://doi.org/10.3390/s24072044