Liquid-Driven Microinjection System for Precise Fundus Injection
Abstract
:1. Introduction
- (1)
- A liquid-driven microinjection system is designed, which has a flow sensor as the feedback for closed-loop control of the flow rate. The liquid-driven injection method proposed in this paper has better controllability compared to gas-driven injection. Meanwhile, the weight applied to the robotic arm can be reduced with this method.
- (2)
- A PID-SMC method is proposed to achieve precise control of drug microinjection. This approach reduces overshooting and improves the precision and robustness of the system compared to traditional control methods.
- (3)
- A fundus experimental environment is designed to simulate fundus pressure in microinjection. In this environment, tracking experiments with different flow rates are carried out to verify the feasibility of the designed system and the proposed control method.
2. Materials and Methods
2.1. Design and Modeling of Liquid-Driven Microinjection System
2.1.1. Design of Liquid-Driven Injection System
- (1)
- The liquid-driven device indirectly propels the drug piston, thereby reducing flow fluctuations caused by the motor pulse.
- (2)
- The injection system extends the injection needle to the robotic arm, enabling integration of the injection mechanism into the surgical robot’s operating arm.
- (3)
- Compared to the standard vitrectomy system for fundus injection, this system has a feedback flow control which makes the flow output smoother.
2.1.2. Modeling of Liquid-Driven Injection System
2.2. Flow Rate Control Based on PID-SMC
2.2.1. PID SMC Method
2.2.2. Simulation
2.3. Injection Pressure Analysis Modeling
3. Experimental Results
3.1. System Setup
- (a)
- Micro-Linear Servo-Actuator
- (b)
- Flow Sensor
- (1)
- Open all three ends of the medical tee and use a syringe with 50 cs viscosity silicone oil to fill the pipeline. Remove the silicone oil syringe from the upper end of the medical tee and close the top of the tee.
- (2)
- Use another syringe to fill the drug syringe with the desired volume of indocyanine green solution. Then, connect the drug syringe to the flow sensor through the luer.
3.2. Fundus Simulation Injection Experiment
3.3. Injection Comparative Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayreh, S.S.; Zimmerman, M.B. Central retinal arterial occlusion: Visual outcome. Am. J. Ophthalmol. Ophthalmol 2005, 140, 376.e1. [Google Scholar]
- Brown, G.C.; Magargal, L.E. Central retinal artery obstruction and visual acuity. Ophthalmology 1982, 89, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Green, W.R.; Chan, C.C.; Hutchins, G.M.; Terry, J.M. Central retinal vein occlusion: A prospective histopathologic study of 29 eyes in 28 cases. Trans. Am. Ophthalmol. Soc. 1981, 1, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Buschini, E.; Fea, A.M.; Lavia, C.A.; Nassisi, M.; Pignata, G.; Zola, M.; Grignolo, F.M. Recent developments in the management 3 of dry age-related macular degeneration. Clin. Ophthalmol. 2015, 9, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Kadonosono, K.; Yamane, S.; Inoue, M.; Yamakawa, T.; Uchio, E. Intra-retinal arterial cannulation using a microneedle for central retinal artery occlusion. Sci. Rep. 2018, 8, 1360. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, J.B.; Kim, J.E.; Thordsen, J.; Dayani, P.; Ober, M.; Mahmoud, T.H. Pneumatic displacement of submacular hemorrhage with subretinal air and tissue plasminogen activator: Initial United States experience. Ophthalmol. Retin. 2018, 2, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Lufsen, M.E.; Spindler, L.; Sørensen, N.B.; Christiansen, A.T.; Alberti, M.; Heegaard, S.; Kiilgaard, J.F. Controlled Subretinal Injection Pressure Prevents Damage in Pigs. Ophthalmologica 2022, 245, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-D.; Tang, L.; Zhou, Y. Subretinal injection: A review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2007, 58, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Kadonosono, K. Retinal endovascular surgery. Macular Surg. Curr. Pract. Trends 2020, 375–380. [Google Scholar]
- Gerber, M.J.; Pettenkofer, M.; Hubschman, J.P. Advanced robotic surgical systems in ophthalmology. Eye 2020, 34, 1554–1562. [Google Scholar] [CrossRef]
- MacLachlan, R.A.; Becker, B.C.; Tabarés, J.C.; Podnar, G.W.; Lobes, L.A.; Riviere, C.N. Micron: An actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 2011, 28, 195–212. [Google Scholar] [CrossRef]
- Yu, H.; Shen, J.H.; Shah, R.J.; Simaan, N.; Joos, K.M. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps. Biomed. Opt. Express 2015, 6, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Gonenc, B.; Iordachita, I. FBG-based transverse and axial force-sensing micro-forceps for retinal microsurgery. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Cehajic-Kapetanovic, J.; Xue, K.; Edwards, T.L.; Meenink, T.C.; Beelen, M.J.; Naus, G.J.; de Smet, M.D.; MacLaren, R.E. First-in-human robot-assisted subretinal drug delivery under local anesthesia. Am. J. Ophthalmol. 2022, 237, 104–113. [Google Scholar] [CrossRef] [PubMed]
- de Smet, M.D.; Meenink, T.C.; Janssens, T.; Vanheukelom, V.; Naus, G.J.; Beelen, M.J.; Meers, C.; Jonckx, B.; Stassen, J.M. Robotic assisted cannulation of occluded retinal veins. PLoS ONE 2016, 11, e0162037. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, N.B.; Klemp, K.; Kjær, T.W.; Heegaard, S.; La Cour, M.; Kiilgaard, J.F. Repeated subretinal surgery and removal of subretinal decalin is well tolerated: Evidence from a porcine model. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1749–1756. [Google Scholar] [CrossRef]
- Akahashi, K.; Morizane, Y.; Hisatomi, T.; Tachibana, T.; Kimura, S.; Hosokawa, M.M.; Shiraga, F. The influence of subretinal injection pressure on the microstructure of the monkey retina. PLoS ONE 2018, 13, e0209996. [Google Scholar]
- Li, Z.; Mak, S.Y.; Sauret, A.; Shum, H.C. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab A Chip 2014, 14, 744–749. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Shapiro, A.H. Peristaltic pumping. Annu. Rev. Fluid Mech. 1971, 3, 13–37. [Google Scholar] [CrossRef]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab A Chip 2012, 12, 515–545. [Google Scholar] [CrossRef]
- Arva, M.C.; Stanica, M.; Anghel, N. Analysis on vibration and resonance characteristics of an low speed 3-phase stepper motor. In Proceedings of the International Conference on Electronics, Computers and Artificial Intelligence, Iasi, Romania, 28–30 June 2018; pp. 1–5. [Google Scholar]
- Zeng, W.; Jacobi, I.; Beck, D.J.; Li, S.; Stone, H.A. Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. Lab A Chip 2015, 15, 1110–1115. [Google Scholar] [CrossRef]
- Lin, C.; Guang, C.; Zheng, Y.; Ma, K.; Yang, Y. Preliminary evaluation of a novel vision-guided hybrid robot system for capsulotomy in cataract surgery☆☆. Displays 2022, 74, 102262. [Google Scholar] [CrossRef]
- Yang, K.; Jin, X.; Wang, Z.; Fang, Y.; Li, Z.; Yang, Z.; Cong, J.; Yang, Y.; Huang, Y.; Wang, L. Robot-assisted subretinal injection system: Development and preliminary verification. BMC Ophthalmol. 2022, 22, 484. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Sommersperger, M.; Yang, J.; Salehi, M.; Busam, B.; Huang, K.; Gehlbach, P.; Iordachita, I.; Navab, N.; Nasseri, M.A. Colibridoc: An eye-in-hand autonomous trocar docking system. In Proceedings of the International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 7717–7723. [Google Scholar]
- Khan, M.A.; Tehami, S.; Mazhar, O. Designing of microcontroller based Syringe Pump with variable and low delivery rates for the administration of small volumes. In Proceedings of the International Symposium for Design and Technology in Electronic Packaging, Brasov, Romania, 22–25 October 2015; pp. 135–138. [Google Scholar]
- Zhou, M.; Yu, Q.; Huang, K.; Mahov, S.; Eslami, A.; Maier, M.; Lohmann, C.P.; Navab, N.; Zapp, D.; Knoll, A.; et al. Towards robotic-assisted subretinal injection: A hybrid parallel–serial robot system design and preliminary evaluation. IEEE Trans. Ind. Electron. 2019, 67, 6617–6628. [Google Scholar] [CrossRef]
- Kim, H.; Cheon, D.; Lim, J.; Nam, K. Robust Flow Control of a Syringe Pump Based on Dual-Loop Disturbance Observers. IEEE Access 2019, 7, 135427–135438. [Google Scholar] [CrossRef]
- White, F.M. Fluid Mechanics, 7th ed.; Lange, M., Stenquist, B., Eds.; The McGraw Hill Companies: New York, NY, USA, 2008; pp. 176–178. [Google Scholar]
- Helian, B.; Mustalahti, P.; Mattila, J.; Chen, Z.; Yao, B. Adaptive robust pressure control of variable displacement axial piston pumps with a modified reduced-order dynamic model. Mechatronics 2022, 87, 102879. [Google Scholar] [CrossRef]
- Kadonosono, K.; Yamane, S.; Arakawa, A.; Inoue, M.; Yamakawa, T.; Uchio, E.; Yanagi, Y.; Amano, S. Endovascular cannulation with a microneedle for central retinal vein occlusion. JAMA Ophthalmol. 2013, 131, 783–786. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, Y.K.; Park, J.Y.; Han, J.W. Analysis of flow rate and pressure in syringe-based wound irrigation using Bernoulli’s equation. Sci. Rep. 2022, 12, 14957. [Google Scholar] [CrossRef]
- Fischer, M.D.; Groppe, M.; Hickey, D.; Singh, M.S.; MacLaren, R.E. Evaluation of an optimised injection system for retinal gene therapy in human patients. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6001–6001. [Google Scholar]
Experiments | Performance Metrics | PID | SMC | PID-SMC |
---|---|---|---|---|
70 μL/min | MAE | 2.1657 | 2.3676 | 1.5497 |
RMSE | 2.8043 | 2.7065 | 1.9504 | |
100 μL/min | MAE | 2.4647 | 2.5205 | 2.2707 |
RMSE | 3.1229 | 3.4250 | 2.6955 | |
200 μL/min | MAE | 7.1198 | 11.1117 | 4.1513 |
RMSE | 9.2001 | 12.5003 | 5.2710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Hu, B.; Liu, R.; Zhao, X.; Sun, M. Liquid-Driven Microinjection System for Precise Fundus Injection. Sensors 2024, 24, 2140. https://doi.org/10.3390/s24072140
Xu S, Hu B, Liu R, Zhao X, Sun M. Liquid-Driven Microinjection System for Precise Fundus Injection. Sensors. 2024; 24(7):2140. https://doi.org/10.3390/s24072140
Chicago/Turabian StyleXu, Shiyu, Bo Hu, Rongxin Liu, Xin Zhao, and Mingzhu Sun. 2024. "Liquid-Driven Microinjection System for Precise Fundus Injection" Sensors 24, no. 7: 2140. https://doi.org/10.3390/s24072140