Design and Study of a Two-Dimensional (2D) All-Optical Spatial Mapping Module
Abstract
:1. Introduction
2. Theoretical Design
2.1. Composition of All-Optical Spatial Mapping Module
2.2. Theoretical Design of Two-Dimensional (2D) All-Optical Spatial Mapping Module
2.3. Error Analysis of Two-Dimensional (2D) All-Optical Spatial Mapping Module
2.3.1. Analysis of Inter-Frame Energy Crosstalk Caused by Incident Beam Spot Width
2.3.2. Analysis of Chromatic Aberration due to Incident Spot Width
2.3.3. Analysis of Main Errors of the Periscope Array
- Substrate angle error of the periscope array
- Triangular reflector traverse error of the periscope array
- Triangular reflector angle error of the periscope array
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakagawa, K.; Iwasaki, A.; Oishi, Y.; Horisaki, R.; Tsukamoto, A.; Nakamura, A.; Hirosawa, K.; Liao, H.; Ushida, T.; Goda, K. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics 2014, 8, 695–700. [Google Scholar] [CrossRef]
- Yuan, X.D.; Li, Z.X.; Zhou, J.H.; Liu, S.; Wang, D.; Lei, C. Hybrid-plane spectrum slicing for sequentially timed all-optical mapping photography. Opt. Lett. 2022, 47, 4822–4825. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, H.; Suzuki, T.; Kannari, F. Extension of time window into nanoseconds in single-shot ultrafast burst imaging by spectrally sweeping pulses. Appl. Opt. 2020, 59, 5210–5215. [Google Scholar] [CrossRef] [PubMed]
- Bhat, V.N.; Thomas, A.S.; Bhattacharyya, A.; Tiwari, V. Rapid scan white light pump–probe spectroscopy with 100 kHz shot-to-shot detection. Opt. Contin. 2023, 2, 1981–1995. [Google Scholar] [CrossRef]
- Tang, J.C.; Sun, H.; Zhang, Q.Y.; Dai, X.C.; Wang, Z.; Ning, C.Z. Helicity-resolved Pump-Probe Observation of Biexciton Fine Structures in Monolayer Molybdenum Ditelluride. QELS Fundam. Sci. 2021. [Google Scholar] [CrossRef]
- Li, Y.H.; Tian, J.S.; Li, D.D.U. Theoretical investigations of a modified compressed ultrafast photography method suitable for single-shot fluorescence lifetime imaging. Appl. Opt. 2021, 60, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.Q.; Huang, Y.B.; Wang, F.; Li, H.Y.; Li, Y.L.; Huang, Z.X. l1 norm based sparse reconstruction approach to compressed ultrafast photography of velocity interferometer system for any reflector. Opt. Lett. 2023, 48, 5205–5208. [Google Scholar] [CrossRef] [PubMed]
- Matlis, N.H.; Axley, A.; Leemans, W.P. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat. Commun. 2012, 3, 1111. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.S.; Leong, N.F.T.; Pandolfi, S.; Kurzer-Ogul, K.; Montgomery, D.S.; Aluie, H.; Bolme, C.; Carver, T.; Cunningham, E.; Curry, C.B.; et al. Multi-frame, ultrafast, x-ray microscope for imaging shockwave dynamics. Opt. Express 2022, 30, 38405–38422. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cong, S.; Song, Y.; Chen, S.; Wu, D. Flow structure and acoustics of underwater imperfectly expanded supersonic gas jets. Shock. Waves 2022, 32, 283–294. [Google Scholar] [CrossRef]
- Burch, A.D.; Paudel, B.; Kang, K.T.; Lee, M.C.; Chen, A.P.; Zhu, J.X.; Prasankumar, R.P.; Hilton, D.J. Ultrafast Magnetic Field-Dependent Dynamics in the High-Temperature Superconductor La2−xSrxCuO4. In Proceedings of the CLEO: Applications and Technology, San Jose, CA, USA, 9–14 May 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. JTh3A.88. [Google Scholar]
- Lin, P.; Li, C.; Flores-Valle, A.; Wang, Z.; Zhang, M.; Cheng, R.; Cheng, J.X. Tilt-angle stimulated Raman projection tomography. Opt. Express 2022, 30, 37112–37123. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.R.; Collado, J.T.; Iuliano, J.N.; Adamczyk, K.; Lukacs, A.; Greetham, G.M.; Sazanovich, I.; Tonge, P.J.; Meech, S.R. Ultrafast Protein Dynamics Probed by Site Specific Transient IR Spectroscopy. In Proceedings of the 22nd International Conference on Ultrafast Phenomena 2020, Washington, DC, USA, 16–19 November 2020. [Google Scholar]
- Baikie, T.K.; Wey, L.T.; Lawrence, J.M.; Medipally, H.; Reisner, E.; Nowaczyk, M.M.; Friend, R.H.; Howe, C.J.; Schnedermann, C.; Rao, A.K.; et al. Photosynthesis re-wired on the pico-second timescale. Nature 2023, 615, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Iwasaki, A.; Oishi, Y.; Horisaki, R.; Tsukamoto, A.; Nakamura, A.; Hirosawa, K.; Liao, H.E.; Ushida, T.; Goda, K.; et al. Motion Picture Femtophotography with Sequentially Timed All-optical Mapping Photography. In Proceedings of the Conference on Lasers and Electro-Optics 2015, San Jose, CA, USA, 10–15 May 2015. [Google Scholar]
- Tamamitsu, M.; Nakagawa, K.; Horisaki, R.; Iwasaki, A.; Oishi, Y.; Tsukamoto, A.; Kannari, F.; Sakuma, I.; Goda, K. Design for sequentially timed all-optical mapping photography with optimum temporal performance. Opt. Lett. 2015, 40, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Isa, F.; Fujii, L.; Hirosawa, K.; Nakagawa, K.; Goda, K.; Sakuma, I.; Kannari, F. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt. Express 2015, 23, 249960. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hida, R.; Yamaguchi, Y.; Nakagawa, K.; Saiki, T.; Kannari, F. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2 Te5 with a subpicosecond resolution. Appl. Phys. Express 2017, 10, 092502. [Google Scholar] [CrossRef]
- Saiki, T.; Hosobata, T.; Kono, Y.; Takeda, M.; Ishijima, A.; Tamamitsu, M.; Kitagawa, Y.; Goda, K.; Morita, S.-Y.; Ozaki, S.; et al. Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror. Opt. Express 2020, 28, 31914–31922. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, H.; Suzuki, T.; Kannari, F. Single-shot ultrafast burst imaging using an integral field spectroscope with a microlens array. Opt. Lett. 2020, 45, 5004–5007. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Yuan, X.D.; Weng, Y.Y.; Wang, D.; Wang, S.Y.; Liu, S.; Zhao, Z.Q.; Lei, C. 2D spectrum slicing for sequentially timed all-optical mapping photography with 25 frames. Appl. Phys. Lett. 2023, 123, 141103. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Grating groove density | 1800 g/mm |
Incidence angle of grating | 30° |
Focal length of No. 1 cylindrical mirror | 1067.5 mm |
Focal length of No. 2 cylindrical mirror | 1075 mm |
Parameters | Value | |||
---|---|---|---|---|
Value of b for the No. 1 periscope array | 24.535 mm | |||
26.133 mm | ||||
28.114 mm | ||||
30.653 mm | ||||
Value of b for the No. 2 periscope array | 6 mm | 6.086 mm | 6.177 mm | 6.271 mm |
6.371 mm | 6.475 mm | 6.585 mm | 6.702 mm | |
6.825 mm | 6.955 mm | 7.093 mm | 7.241 mm | |
7.398 mm | 7.566 mm | 7.747 mm | 7.942 mm |
Parameters | Calculated Value | Final Value |
---|---|---|
Angle error of the glass substrate: η1 | 1.93° | 0.5° |
Traverse error of the triangular mirror: ΔY2/ΔY3 | 1.2 mm/1.2 mm | 0.1 mm/0.1 mm |
Angle error of the triangular mirror: η2/η3 | 0.0258°/1.06° | 0.01°/0.1° |
Indicator Name | Indicator Value |
---|---|
Number of frames | 16 (4 × 4) |
Size of single frame | 6 mm × 6 mm |
Spectral Bandwidth | 20 nm (790–810 nm) |
Spectral Resolution | 1.25 nm |
MTF@50 lp/mm | ≥0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Yu, H.; Cui, K.; Yu, Y.; Tao, C. Design and Study of a Two-Dimensional (2D) All-Optical Spatial Mapping Module. Sensors 2024, 24, 2219. https://doi.org/10.3390/s24072219
Ma Z, Yu H, Cui K, Yu Y, Tao C. Design and Study of a Two-Dimensional (2D) All-Optical Spatial Mapping Module. Sensors. 2024; 24(7):2219. https://doi.org/10.3390/s24072219
Chicago/Turabian StyleMa, Zhenyu, Haili Yu, Kai Cui, Yang Yu, and Chen Tao. 2024. "Design and Study of a Two-Dimensional (2D) All-Optical Spatial Mapping Module" Sensors 24, no. 7: 2219. https://doi.org/10.3390/s24072219
APA StyleMa, Z., Yu, H., Cui, K., Yu, Y., & Tao, C. (2024). Design and Study of a Two-Dimensional (2D) All-Optical Spatial Mapping Module. Sensors, 24(7), 2219. https://doi.org/10.3390/s24072219