Cyber–Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era—A Review
Abstract
:1. Introduction
2. Framework of Cyber–Physical Systems for Machining Processes
3. Efficient Multi-Scale Modelling for Process Optimization
3.1. Material Constitutive Models
3.2. Fracture Model in Chip Formation
3.3. Thermal Boundary Conditions and Heat Transfer Models
3.4. Microstructure Modeling
3.5. Modelling of Tool Wear Considering the Tool Material Microstructure
4. Offline/Online Process Optimization for Cyber–Physical Systems
4.1. Productivity and Economics
4.1.1. Tool Wear Monitoring and Control
4.1.2. Process Parameters Adaptive Control
Approach | Objective | Methods | Feedback | Machining Process |
---|---|---|---|---|
Offline | Power-constrained optimization [31] | An iterative optimization approach constrained with the spindle power to estimate feedrates minimizing the production time | Offline spindle power and feedrate (in the previous operation) | Milling |
Offline | Spindle power control [14] | Multi-objective optimization is developed to improve machining efficiency and reduce fluctuations in the spindle power based on an ANN-based model of spindle power | Milling | |
Offline | Cutting force control [164] | A machining time minimizer is developed based on the simulation of cutting engagements and predicting cutting forces. The optimizer maximizes the cutting forces through the tool path by manipulating the feedrate | Milling | |
Online | Cutting force control [165] | An online force control system was developed that automatically adjusts feedrate based on the force signal. To prevent vibration damage, a chatter suppression control module was added to the system by analyzing the force feedback. | Force sensor | Turning |
Online | Cutting force control [166] | Nonlinear mechanistic machining force model identification with Bayesian inference and recursive least square estimator | Directional strain gauge-based force sensors | Turning |
Offline/ Online | Cutting force control [162] | Combination of offline cutting force optimization using artificial neural network (ANN) as the predictive model and particle swarm optimization (PSO) along with online feedforward force control using neural control to adjust the feedrate by assigning a feedrate override percentage | Cutting force signals | Milling |
Offline/ Online | Cutting force, dynamic stability and cutting temperature [13] | A hybrid optimization, monitoring, and control (HOMC) system was introduced considering the machining primary limits of chatter, tool deflection, and thermal stresses | Spindle power, vibration and acoustic emission | Milling |
4.2. Part Quality
4.2.1. Surface Integrity
Approach | Objective | Methods | Feedback | Machining Process |
---|---|---|---|---|
Offline | Chatter Avoidance [204] | A heuristic approach is developed to determine the range of spindle speed from the stability lobe diagram to be used in minimization of energy consumption and machining time by selecting the optimum feedrate, depth, and width of cut | Milling | |
Offline | Chatter Avoidance [205] | A multi-objective optimization methodology to maximize MRR and minimize surface location error (SLE), considering aplim as the depth constraint to avoid chatter vibration | Milling | |
Offline | Chatter Avoidance [206] | Using the determined relationship between the lead angle and depth of cut from an experimentally constructed chatter stability lobe diagram, an iso-planar tool path is generated to maximize the depth of cut in a five-axis milling operation | Five-axis milling | |
Offline | Chatter Avoidance [207] | A chatter-free machining approach is developed to maximize the allowable cutting depth based on genetic algorithms. The method optimizes several tool parameters such as number of teeth, shank diameter, fluted section diameter, shank length, taper length, and length of fluted section | Milling | |
Online | Chatter Avoidance [208] | Constructing the transfer function of a spindle velocity controller by measuring the Frequency Response Function (FRF) of the system | Drive motor current signals | Milling |
Online | Chatter Avoidance [180] | Adaptive spindle speed difference method (SDM) | Sensor-less cutting force estimation | Parallel end-milling |
4.2.2. Geometric Accuracy
4.3. Process Sustainability
5. Gap Analysis and Future Outlook
- Establishing a connection between cutting state numerical models and empirical and AI-based ones to improve their accuracy and reduce the time and cost of the experimental procedure performed to develop them. This is needed as a result of the technical sophistications required for the implementation of numerical models in industrial applications.
- Conducting further research studies to optimize cutting parameters that are directly linked to process sustainability. These optimization approaches have recently become in high demand due to the emergence of new aspects that must be considered in industrial production driven by the emerging regulatory obligations and policies related to climate action and energy consumption.
- Performing further studies to investigate crack propagation that can be used to correlate the propagation characteristics with the machining signals, such as AE for the early prediction and prevention of tool failure.
- Combining offline machining system models with online monitoring and multi-objective optimization approaches to provide an all-inclusive cyber–physical machining system that maximizes manufacturing productivity and improves process sustainability and profitability.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- NIST-Applied Economics Office. Manufacturing Industry Statistics. 2021. Available online: https://www.nist.gov/el/applied-economics-office/manufacturing/total-us-manufacturing/manufacturing-economy (accessed on 1 December 2023).
- Canadian Manufacturers and Exporters. 20/20 Building our Vision for the Future: The Future of Manufacturing in Canada—Perspectives and Recommendations; Canadian Manufacturers and Exporters: Toronto, ON, Canada, 2005. [Google Scholar]
- Canadian Manufacturers and Exporters. Industry 2030—Roadmap to 2030: A Path towards Doubling Canadian Manufacturing Output and Exports; Canadian Manufacturers and Exporters: Toronto, ON, Canada, 2018. [Google Scholar]
- Meadows, D.H.; Meadows, D.H.; Randers, J.; Behrens, W.W., III. The Limits to Growth: A Report to the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972; p. 211. [Google Scholar]
- Brundtland, G.H. Our Common Future Report of the World Commission on Environment and Development; UN-Document; United Nations: Geneva, Switzerland, 1987; p. 427. [Google Scholar]
- Attia, M.H. Paradigm Shift Towards Integrated Sustainability and High Performance Machining. In Proceedings of the 18th International Conference on Environmental Science and Technology (CEST 2023), Athens, Greece, 30 August–2 September 2023. [Google Scholar]
- Dixson-Decleve, S.; Balland, P.; Bria, F.; Dunlop, K.; Giovannini, E.; Tataj, D.; Hidalgo, C.; Huang, A.; Isaksson, D.; Martins, F. Industry 5.0: A Transformative Vision for Europe; Publications Office of the European Union: Luxembourg, Luxembourg, 2022. [Google Scholar]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research, Industry 5.0; Publications Office: Brussels, Belgium, 2021. [Google Scholar]
- John, A.; Mohan, S.; Vianny, D.M.M. Cognitive cyber-physical system applications. In Cognitive Engineering for Next Generation Computing: A Practical Analytical Approach; Wiley: Hoboken, NJ, USA, 2021; pp. 167–187. [Google Scholar]
- Hassan, M.; Sadek, A.; Attia, M.H. Novel sensor-based tool wear monitoring approach for seamless implementation in high speed milling applications. CIRP Ann. 2021, 70, 87–90. [Google Scholar] [CrossRef]
- Eureka. SMART ToolSense Sensor-Based Smart Tooling for Machining Process On-Line Measurement and Monitoring (ToolSense), Ref No. 2019-03423. 2020. Available online: https://www.vinnova.se/en/p/eureka-smart-sensor-based-smart-tooling-for-machining-process-on-line-measurement-and-monitoring-toolsense/ (accessed on 6 October 2023).
- Gohari, H.; Mohamed, A.; Hassan, M.; M’Saoubi, R.; Attia, H. Hybrid Offline-Online Optimization, Monitoring and Control of Milling Processes. CIRP Ann. Manuf. Technol. 2023, 72, 85–88. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, P.; Hu, P.; Yin, Y.; Zhou, H.; Chen, J.; Yang, J. Multi-objective feed rate optimization of three-axis rough milling based on artificial neural network. Int. J. Adv. Manuf. Technol. 2021, 114, 1323–1339. [Google Scholar] [CrossRef]
- Vu, N.-C.; Dang, X.-P.; Huang, S.-C. Multi-objective optimization of hard milling process of AISI H13 in terms of productivity, quality, and cutting energy under nanofluid minimum quantity lubrication condition. Meas. Control 2020, 54, 820–834. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, J.; Xu, J.; Chen, M.; Niu, J. Path, feedrate and trajectory planning for free-form surface machining: A state-of-the-art review. Chin. J. Aeronaut. 2022, 35, 12–29. [Google Scholar] [CrossRef]
- Xu, G.; Chen, J.; Zhou, H.; Yang, J.; Hu, P.; Dai, W. Multi-objective feedrate optimization method of end milling using the internal data of the CNC system. Int. J. Adv. Manuf. Technol. 2019, 101, 715–731. [Google Scholar] [CrossRef]
- Hsiao, T.-C.; Vu, N.-C.; Tsai, M.-C.; Dang, X.-P.; Huang, S.-C. Modeling and optimization of machining parameters in milling of INCONEL-800 super alloy considering energy, productivity, and quality using nanoparticle suspended lubrication. Meas. Control 2021, 54, 880–894. [Google Scholar] [CrossRef]
- Cheng, D.-J.; Xu, F.; Xu, S.-H.; Zhang, C.-Y.; Zhang, S.-W.; Kim, S.-J. Minimization of Surface Roughness and Machining Deformation in Milling of Al Alloy Thin-Walled Parts. Int. J. Precis. Eng. Manuf. 2020, 21, 1597–1613. [Google Scholar] [CrossRef]
- Fittamami, B.M.; Pujiyanto, E.; Priyandari, Y. Multi-Objective Optimization of Machining Parameters for Multi-Pass CNC Turning to Minimize Carbon Emissions, Energy, Noise and Cost. J. Tek. Ind. J. Keilmuan Dan Apl. Tek. Ind. 2021, 23, 25–34. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Sağlam, H. Investigation of progressive tool wear for determining of optimized machining parameters in turning. Measurement 2019, 140, 427–436. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Hadad, M.; Araee, A.; Ebrahimi, S.H. Influence of machining conditions on tool wear and surface characteristics in hot turning of AISI630 steel. Int. J. Adv. Manuf. Technol. 2021, 114, 3515–3535. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, L.; Ran, X. Research progress on the chatter stability in machining systems. Int. J. Adv. Manuf. Technol. 2024, 131, 29–62. [Google Scholar] [CrossRef]
- Deng, C.; Zhou, W.; Yang, K.; Huang, Z.; Tang, Q. Robust Chatter Stability Prediction of the Milling Process considering Uncertain Machining Positions. Math. Probl. Eng. 2020, 2020, 1398957. [Google Scholar] [CrossRef]
- Imani Asrai, R.; Newman, S.T.; Nassehi, A. A mechanistic model of energy consumption in milling. Int. J. Prod. Res. 2018, 56, 642–659. [Google Scholar] [CrossRef]
- He, Y.; Tian, X.; Li, Y.; Wang, Y.; Wang, Y.; Wang, S. Modeling and analyses of energy consumption for machining features with flexible machining configurations. J. Manuf. Syst. 2022, 62, 463–476. [Google Scholar] [CrossRef]
- Zhou, G.; Lu, Q.; Xiao, Z.; Zhou, C.; Tian, C. Cutting parameter optimization for machining operations considering carbon emissions. J. Clean. Prod. 2019, 208, 937–950. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, C.; Lu, F.; Zhang, J. Integrated optimization of cutting parameters and tool path for cavity milling considering carbon emissions. J. Clean. Prod. 2020, 250, 119454. [Google Scholar] [CrossRef]
- Altintas, Y. Adaptive Control. In CIRP Encyclopedia of Production Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 30–33. [Google Scholar] [CrossRef]
- Kurt, M.; Bagci, E. Feedrate optimisation/scheduling on sculptured surface machining: A comprehensive review, applications and future directions. Int. J. Adv. Manuf. Technol. 2011, 55, 1037–1067. [Google Scholar] [CrossRef]
- Rattunde, L.; Laptev, I.; Klenske, E.D.; Möhring, H.-C. Safe optimization for feedrate scheduling of power-constrained milling processes by using Gaussian processes. Procedia CIRP 2021, 99, 127–132. [Google Scholar] [CrossRef]
- Jacso, A.; Szalay, T.; Sikarwar, B.S.; Phanden, R.K.; Singh, R.K.; Ramkumar, J. Investigation of conventional and ANN-based feed rate scheduling methods in trochoidal milling with cutting force and acceleration constraints. Int. J. Adv. Manuf. Technol. 2023, 127, 487–506. [Google Scholar] [CrossRef]
- Raghavendra, S.; Shimoga Sathyanarayana, P.; SelvaKumar, S.; Thangarasu, V.; Manjunatha, K. High speed machining of titanium Ti 6Al4V alloy components: Study and optimisation of cutting parameters using RSM. Adv. Mater. Process. Technol. 2022, 8, 277–290. [Google Scholar] [CrossRef]
- Möhring, H.C.; Wiederkehr, P.; Erkorkmaz, K.; Kakinuma, Y. Self-optimizing machining systems. CIRP Ann. 2020, 69, 740–763. [Google Scholar] [CrossRef]
- Lukic, D.; Cep, R.; Vukman, J.; Antic, A.; Djurdjev, M.; Milosevic, M. Multi-Criteria Selection of the Optimal Parameters for High-Speed Machining of Aluminum Alloy Al7075 Thin-Walled Parts. Metals 2020, 10, 1570. [Google Scholar] [CrossRef]
- Gavrus, C.; Ivan, N.-V.; Oancea, G. Determination of the Depth of Cut via Surface Integrity. Appl. Sci. 2023, 13, 6881. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Liu, G.; Zhang, Y. Feedrate optimization method based on machining allowance optimization and constant power constraint. Int. J. Adv. Manuf. Technol. 2021, 115, 3345–3360. [Google Scholar] [CrossRef]
- Altintas, Y.; Merdol, S.D. Virtual High Performance Milling. CIRP Ann. 2007, 56, 81–84. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, Y.; Xi, X.; Wang, H. Non-uniform machining allowance planning method of thin-walled parts based on the workpiece deformation constraint. Int. J. Adv. Manuf. Technol. 2023, 124, 2185–2198. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X. Cyber-physical Machine Tool—The Era of Machine Tool 4.0. Procedia CIRP 2017, 63, 70–75. [Google Scholar] [CrossRef]
- Lee, E.A. Cyber-physical systems-are computing foundations adequate. In Proceedings of the Position Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, Austin, TX, USA, 16–17 October 2006. [Google Scholar]
- Rajkumar, R.R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems. In Proceedings of the 47th Design Automation Conference on—DAC ‘10, Anaheim, CA, USA, 13–18 June 2010. [Google Scholar]
- Zhu, K. The Cyber-Physical Production System of Smart Machining System. In Springer Series in Advanced Manufacturing; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 383–407. [Google Scholar] [CrossRef]
- Jeulin, M.; Cahuc, O.; Darnis, P.; Laheurte, R. A 6-components mechanistic model of cutting forces and moments in milling. Forces Mech. 2022, 9, 100130. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, S.; Wang, Z.; Wang, S.; Ma, C.; Yang, B. Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: A case study in five-axis machining. J. Intell. Manuf. 2022, 33, 943–952. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Dong, L.; Qin, A.; Zhang, Y.; Yang, M.; Gao, T.; Wang, X.; Liu, M.; Cui, X.; et al. Kinematics and improved surface roughness model in milling. Int. J. Adv. Manuf. Technol. 2024, 131, 2087–2108. [Google Scholar] [CrossRef]
- Lyu, D.; Liu, Q.; Liu, H.; Zhao, W. Dynamic error of CNC machine tools: A state-of-the-art review. Int. J. Adv. Manuf. Technol. 2020, 106, 1869–1891. [Google Scholar] [CrossRef]
- Liu, C.; Xiang, S.; Lu, C.; Wu, C.; Du, Z.; Yang, J. Dynamic and static error identification and separation method for three-axis CNC machine tools based on feature workpiece cutting. Int. J. Adv. Manuf. Technol. 2020, 107, 2227–2238. [Google Scholar] [CrossRef]
- Zhang, L.; Du, J. Acceleration smoothing algorithm based on jounce limited for corner motion in high-speed machining. Int. J. Adv. Manuf. Technol. 2018, 95, 1487–1504. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, J.; Yan, Y.; Liu, G. A real-time corner smoothing and interpolation algorithm for short line segments to realize continuous motion of tool axis jerk. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 542–560. [Google Scholar] [CrossRef]
- Fraser, S.; Attia, M.H.; Osman, M.O.M. Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling. ASME J. Manuf. Sci. Eng 1998, 120, 623–631. [Google Scholar] [CrossRef]
- Fraser, S.; Attia, H.; Osman, M.O.M. Real-Time Adaptive Modeling Approach to Compensate the Thermal Deformation of Nonlinear Machine Tool Structures. In Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; pp. 447–459. [Google Scholar]
- Narendra Reddy, T.; Shanmugaraj, V.; Vinod, P.; Gopi Krishna, S. Real-time Thermal Error Compensation Strategy for Precision Machine tools. Mater. Today Proc. 2020, 22, 2386–2396. [Google Scholar] [CrossRef]
- Peng, B.; Bergs, T.; Schraknepper, D.; Klocke, F.; Döbbeler, B. A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear. Procedia CIRP 2019, 82, 302–307. [Google Scholar] [CrossRef]
- Zhou, T.; He, L.; Zou, Z.; Du, F.; Wu, J.; Tian, P. Three-dimensional turning force prediction based on hybrid finite element and predictive machining theory considering edge radius and nose radius. J. Manuf. Process. 2020, 58, 1304–1317. [Google Scholar] [CrossRef]
- Chuang, W.; Guanghui, Z.; Junsheng, W. Smart cyber-physical production system enabled workpiece production in digital twin job shop. Adv. Mech. Eng. 2021, 13, 16878140211040888. [Google Scholar] [CrossRef]
- Lee, J.; Azamfar, M.; Singh, J.; Siahpour, S. Integration of digital twin and deep learning in cyber-physical systems: Towards smart manufacturing. IET Collab. Intell. Manuf. 2020, 2, 34–36. [Google Scholar] [CrossRef]
- Lakoju, M.; Ajienka, N.; Khanesar, M.A.; Burnap, P.; Branson, D.T. Unsupervised Learning for Product Use Activity Recognition: An Exploratory Study of a “Chatty Device”. Sensors 2021, 21, 4991. [Google Scholar] [CrossRef]
- Burnap, P.; Branson, D.; Murray-Rust, D.; Preston, J.; Richards, D.; Burnett, D.; Edwards, N.; Firth, R.; Gorkovenko, K.; Khanesar, M.A.; et al. Chatty factories: A vision for the future of product design and manufacture with IoT. In Proceedings of the Living in the Internet of Things (IoT 2019), London, UK, 1–2 May 2019. [Google Scholar]
- Salman, K.h.; Elsheikh, A.H.; Ashham, M.; Ali, M.K.A.; Rashad, M.; Haiou, Z. Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 349. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Klippel, H.; Roethlin, M.; Wegener, K. An improved thermal model for SPH metal cutting simulations on GPU. Appl. Math. Model. 2021, 100, 728–750. [Google Scholar] [CrossRef]
- Shrey, S.; Kothavale, B.; Saraf, M.; Kakade, H.; Shelke, S.; Kusupudi, K. Smooth particle hydrodynamics: A meshless approach for structural mechanics. Simulation 2024, 100, 171–184. [Google Scholar] [CrossRef]
- Röthlin, M.; Klippel, H.; Afrasiabi, M.; Wegener, K. Metal cutting simulations using smoothed particle hydrodynamics on the GPU. Int. J. Adv. Manuf. Technol. 2019, 102, 3445–3457. [Google Scholar] [CrossRef]
- Klippel, H.; Gonzalez Sanchez, E.; Isabel, M.; Röthlin, M.; Afrasiabi, M.; Michal, K.; Wegener, K. Cutting Force Prediction of Ti6Al4V using a Machine Learning Model of SPH Orthogonal Cutting Process Simulations. J. Mach. Eng. 2022, 22, 111–123. [Google Scholar] [CrossRef]
- Ducobu, F.; Arrazola, P.-J.; Rivière-Lorphèvre, E.; De Zarate, G.O.; Madariaga, A.; Filippi, E. The CEL method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation. Procedia CIRP 2017, 58, 245–250. [Google Scholar] [CrossRef]
- Melkote, S.; Liang, S.; Özel, T.; Jawahir, I.S.; Stephenson, D.A.; Wang, B. 100th Anniversary Issue of the Manufacturing Engineering Division PaperA Review of Advances in Modeling of Conventional Machining Processes: From Merchant to the Present. J. Manuf. Sci. Eng. 2022, 144, 110801. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B.; Wang, C.; Cheung, C.F. Friction behaviors in the metal cutting process: State of the art and future perspectives. Int. J. Extrem. Manuf. 2023, 5, 012002. [Google Scholar] [CrossRef]
- Storchak, M.; Möhring, H.-C.; Stehle, T. Improving the friction model for the simulation of cutting processes. Tribol. Int. 2022, 167, 107376. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, E.; Wei, S. Investigation on tensile fracture properties of TA15 specimen formed by selective electron beam melting. Mater. Sci. Eng. A 2020, 773, 138826. [Google Scholar] [CrossRef]
- Stolf, P.; Paiva, J.M.; Ahmed, Y.S.; Endrino, J.L.; Goel, S.; Veldhuis, S.C. The role of high-pressure coolant in the wear characteristics of WC-Co tools during the cutting of Ti–6Al–4V. Wear 2019, 440–441, 203090. [Google Scholar] [CrossRef]
- Shi, B.; Abboud, E.; Attia, M.H.; Thomson, V. Effect of Chip Segmentation on Machining-Induced Residual Stresses in Turning Ti6Al4V. Procedia CIRP 2022, 108, 424–429. [Google Scholar] [CrossRef]
- Shi, B.; Attia, H. Current status and future direction in the numerical modeling and simulation of machining processes: A critical literature review. Mach. Sci. Technol. 2010, 14, 149–188. [Google Scholar] [CrossRef]
- Wang, Z.L.; Hu, Y.J.; Zhu, D. DEFORM-3D Based on Machining Simulation during Metal Milling. Key Eng. Mater. 2014, 579–580, 197–201. [Google Scholar] [CrossRef]
- Gupta, A.K.; Anirudh, V.K.; Singh, S.K. Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures. Mater. Des. 2013, 43, 410–418. [Google Scholar] [CrossRef]
- Karkalos, N.E.; Markopoulos, A.P. Determination of Johnson-Cook material model parameters by an optimization approach using the fireworks algorithm. Procedia Manuf. 2018, 22, 107–113. [Google Scholar] [CrossRef]
- Titu, N.A.; Baucum, M.; No, T.; Trotsky, M.; Karandikar, J.; Schmitz, T.L.; Khojandi, A. Estimating Johnson-Cook Material Parameters using Neural Networks. Procedia Manuf. 2021, 53, 680–689. [Google Scholar] [CrossRef]
- Shi, B.; Attia, H.; Tounsi, N. Identification of Material Constitutive Laws for Machining—Part I: An Analytical Model Describing the Stress, Strain, Strain Rate, and Temperature Fields in the Primary Shear Zone in Orthogonal Metal Cutting. J. Manuf. Sci. Eng. 2010, 132, 051008. [Google Scholar] [CrossRef]
- Shi, B.; Attia, H.; Tounsi, N. Identification of Material Constitutive Laws for Machining—Part II: Generation of the Constitutive Data and Validation of the Constitutive Law. J. Manuf. Sci. Eng. 2010, 132, 051009. [Google Scholar] [CrossRef]
- Lee, W.-S.; Lin, C.-F. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. J. Mater. Process. Technol. 1998, 75, 127–136. [Google Scholar] [CrossRef]
- Kotkunde, N.R. Experimental and Numerical Investigations of Forming Behavior in Ti-6Al-4V Alloy at Elevated Temperatures. Ph.D. Thesis, Birla Institute of Technology and Science, Pilani, India, 2015. [Google Scholar]
- Umbrello, D. Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process. Technol. 2008, 196, 79–87. [Google Scholar] [CrossRef]
- Leseur, D. Experimental Investigations of Material Models for Ti-6A1-4V and 2024-T3; Office of Scientific and Technical Information (OSTI): Washington, DC, USA, 1999.
- Wang, J. Study on a Zerilli-Armstrong and an artificial neural network model for 4Cr5MoSiV1 Quenched Steel at High Strain Rate. In Proceedings of the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011. [Google Scholar]
- Tabei, A.; Abed, F.H.; Voyiadjis, G.Z.; Garmestani, H. Constitutive modeling of Ti-6Al-4V at a wide range of temperatures and strain rates. Eur. J. Mech. A Solids 2017, 63, 128–135. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Abed, F.H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 2005, 37, 355–378. [Google Scholar] [CrossRef]
- Liu, C.; Goel, S.; Llavori, I.; Stolf, P.; Giusca, C.L.; Zabala, A.; Kohlscheen, J.; Paiva, J.M.; Endrino, J.L.; Veldhuis, S.C.; et al. Benchmarking of several material constitutive models for tribology, wear, and other mechanical deformation simulations of Ti6Al4V. J. Mech. Behav. Biomed. Mater. 2019, 97, 126–137. [Google Scholar] [CrossRef] [PubMed]
- SFTC. S.F.T.C. Deform Software—Material Library; V11.3.; Scientific Forming Technologies Corporation: Ohio, USA, 2018. [Google Scholar]
- Ma, W.; Wang, R.; Zhou, X.; Xie, X. The finite element analysis–based simulation and artificial neural network–based prediction for milling processes of aluminum alloy 7050. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 265–277. [Google Scholar] [CrossRef]
- Charalampous, P. Prediction of Cutting Forces in Milling Using Machine Learning Algorithms and Finite Element Analysis. J. Mater. Eng. Perform. 2021, 30, 2002–2013. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z. Serrated chip formation mechanism based on mixed mode of ductile fracture and adiabatic shear. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 181–190. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Wang, S.; Chen, L.; Fu, X.; Pan, Y. Research on Formation Mechanism and Behavior Control of Adiabatic Shear of Hard Turning Die Steel. In Proceedings of the 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, Greece, 14–17 July 2020; pp. 27–31. [Google Scholar]
- Hejazi, M.; Haji Aboutalebi, F. Assessment of Various Ductile Damage Criteria in Numerical Simulations of Machining Processes. Int. J. Precis. Eng. Manuf. 2024, 25, 131–139. [Google Scholar] [CrossRef]
- Kherraf, A.; Tamerabet, Y.; Brioua, M.; Benbouta, R. Chip formation process using finite element simulation “Influence of Cutting Speed Variation”. J. Solid Mech. 2019, 11, 854–861. [Google Scholar]
- Hegab, H.; Shi, B.; Damir, A.; Attia, M.H.; M’Saoubi, R. Development of Machining Strategies for Low Machinability Powder Metallurgy Ni-Alloys; Post-doctoral Project Report, Mechanical Engineering Department, McGill University: Montreal, QC, Canada, 2023. [Google Scholar]
- Laakso, S.V.A.; Mallipeddi, D.; Krajnik, P. Evaluation of subcooled MQL in cBN hard turning of powder-based Cr-Mo-V tool steel using simulations and experiments. Int. J. Adv. Manuf. Technol. 2022, 118, 511–531. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: A review. Mater. Res. Express 2018, 5, 032001. [Google Scholar] [CrossRef]
- Sharma, R.; Jha, B.K.; Pahuja, V. A Critical Review on Machining Of Titanium and Its Alloy under Cryogenic Cooling Environment. IOP Conf. Ser. Mater. Sci. Eng. 2020, 998, 012013. [Google Scholar] [CrossRef]
- Suhaimi, M.A.; Yang, G.-D.; Park, K.-H.; Hisam, M.J.; Sharif, S.; Kim, D.-W. Effect of Cryogenic Machining for Titanium Alloy Based on Indirect, Internal and External Spray System. Procedia Manuf. 2018, 17, 158–165. [Google Scholar] [CrossRef]
- Jawahir, I.S.; Attia, M.H.; Biermann, D.; Duflou, J.; Klocke, F.; Meyer, D.; Newman, S.T.; Pusavec, F.; Putz, M.; Rech, J. Cryogenic manufacturing processes. Keynote: CIRP Ann. Manuf. Technol. 2016, 65, 713–736. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, A.M.; Gupta, M.K.; Mia, M.; He, N.; Li, L.; Sivalingam, V. Influence of CO2-snow and subzero MQL on thermal aspects in the machining of Ti-6Al-4V. Appl. Therm. Eng. 2020, 177, 115480. [Google Scholar] [CrossRef]
- Melkote, S.N.; Grzesik, W.; Outeiro, J.; Rech, J.; Schulze, V.; Attia, H.; Arrazola, P.-J.; M’Saoubi, R.; Saldana, C. Advances in material and friction data for modelling of metal machining. CIRP Ann. 2017, 66, 731–754. [Google Scholar] [CrossRef]
- García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Johansson, S.A.E.; Öhman, M.; Ekh, M.; Wahnström, G. CCBuilder: A software that produces synthetic microstructures of WC-Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2019, 78, 210–218. [Google Scholar] [CrossRef]
- Tkalich, D.; Yastrebov, V.A.; Cailletaud, G.; Kane, A. Multiscale modeling of cemented tungsten carbide in hard rock drilling. Int. J. Solids Struct. 2017, 128, 282–295. [Google Scholar] [CrossRef]
- Mingard, K.P.; Roebuck, B.; Jones, H.G.; Stewart, M.; Cox, D.; Gee, M.G. Visualisation and measurement of hardmetal microstructures in 3D. Int. J. Refract. Met. Hard Mater. 2018, 71, 285–291. [Google Scholar] [CrossRef]
- Coffman, V.R.; Reid, A.C.E.; Langer, S.A.; Dogan, G. OOF3D: An image-based finite element solver for materials science. Math. Comput. Simul. 2012, 82, 2951–2961. [Google Scholar] [CrossRef]
- Sosa, J.; Huber, D.; Welk, B.; Fraser, H. MIPAR™: 2D and 3D image analysis software designed by materials scientists, for all scientists. Microsc. Microanal. 2017, 23, 230–231. [Google Scholar] [CrossRef]
- Hage, I.S.; Hamade, R.F. Micro-FEM Orthogonal Cutting Model for Bone Using Microscope Images Enhanced Via Artificial Intelligence. Procedia CIRP 2013, 8, 385–390. [Google Scholar] [CrossRef]
- Zhu, J.-F.; Zhang, L.; Zhang, H.-D.; Zhong, Z.-Q.; Zhou, L.; Chen, Y. Real microstructure-based simulation of thermal residual stresses in cemented carbides and the related strengthening and toughening consideration. Int. J. Refract. Met. Hard Mater. 2018, 71, 239–245. [Google Scholar] [CrossRef]
- Özden, U.A.; Bezold, A.; Broeckmann, C. Numerical Simulation of Fatigue Crack Propagation in WC/Co based on a Continuum Damage Mechanics Approach. Procedia Mater. Sci. 2014, 3, 1518–1523. [Google Scholar] [CrossRef]
- Lim, H.; Battaile, C.C.; Bishop, J.E.; Foulk, J.W. Investigating mesh sensitivity and polycrystalline RVEs in crystal plasticity finite element simulations. Int. J. Plast. 2019, 121, 101–115. [Google Scholar] [CrossRef]
- Ardeljan, M.; Knezevic, M.; Nizolek, T.; Beyerlein, I.J.; Mara, N.A.; Pollock, T.M. A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int. J. Plast. 2015, 74, 35–57. [Google Scholar] [CrossRef]
- Alleman, C.N.; Foulk, J.W.; Mota, A.; Lim, H.; Littlewood, D.J. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics. Comput. Mech. 2018, 61, 207–218. [Google Scholar] [CrossRef]
- Bardetsky, O. Tribological Behavior of Cutting Tool in High-Speed Machining of Al-Si Alloys; McMaster University: Hamilton, ON, Canada, 2005. [Google Scholar]
- Liu, H.; Ayed, Y.; Birembaux, H.; Rossi, F.; Poulachon, G. Impacts of flank wear and cooling strategies on evolutions of built-up edges, diffusion wear and cutting forces in Ti6Al4V machining. Tribol. Int. 2022, 171, 107537. [Google Scholar] [CrossRef]
- Malakizadi, A.; Shi, B.; Hoier, P.; Attia, H.; Krajnik, P. Physics—based approach for predicting dissolution–Diffusion tool wear in machining. CIRP Ann. Manuf. Technol. 2020, 69, 4. [Google Scholar] [CrossRef]
- Peng, R.; Tong, J.; Tang, X.; Chen, R.; Jiang, S. Crack propagation and wear estimation of ceramic tool in cutting inconel 718 based on discrete element method. Tribol. Int. 2020, 142, 105998. [Google Scholar] [CrossRef]
- Mchugh, P.E.; Connolly, P.J. Micromechanical modelling of ductile crack growth in the binder phase of WC–Co. Comput. Mater. Sci. 2003, 27, 423–436. [Google Scholar] [CrossRef]
- Fleming, J.R.; Suh, N.P. Mechanics of crack propagation in delamination wear. Wear 1977, 44, 39–56. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bardetsky, A.; Attia, H.; Elbestawi, M. A Fracture Mechanics Approach to the Prediction of Tool Wear in Dry High Speed Machining of Aluminum Cast Alloys—Part 2: Model Calibration and Verification. J. Tribol. 2007, 129, 31–39. [Google Scholar] [CrossRef]
- Jones, R. Fatigue crack growth and damage tolerance. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 463–483. [Google Scholar] [CrossRef]
- Tanaka, K.; Nakai, Y.; Yamashita, M. Fatigue growth threshold of small cracks. Int. J. Fract. 1981, 17, 519–533. [Google Scholar] [CrossRef]
- Gall, K.; Sehitoglu, H.; Kadioglu, Y. A Methodology for Predicting Variability in Microstructurally Short Fatigue Crack Growth Rates. J. Eng. Mater. Technol. 1997, 119, 171–179. [Google Scholar] [CrossRef]
- Li, C. Vector CTD criterion applied to mixed mode fatigue crack growth. Fatigue Fract. Eng. Mater. Struct. 1989, 12, 59–65. [Google Scholar] [CrossRef]
- Bardetsky, A.; Attia, H.; Elbestawi, M. A Fracture Mechanics Approach to the Prediction of Tool Wear in Dry High-Speed Machining of Aluminum Cast Alloys—Part 1: Model Development. J. Tribol. 2007, 129, 23–30. [Google Scholar] [CrossRef]
- Özden, U.A.; Mingard, K.P.; Zivcec, M.; Bezold, A.; Broeckmann, C. Mesoscopical finite element simulation of fatigue crack propagation in WC/Co-hardmetal. Int. J. Refract. Met. Hard Mater. 2015, 49, 261–267. [Google Scholar] [CrossRef]
- Chai, M.; Hou, X.; Zhang, Z.; Duan, Q. Identification and prediction of fatigue crack growth under different stress ratios using acoustic emission data. Int. J. Fatigue 2022, 160, 106860. [Google Scholar] [CrossRef]
- Xu, L.; Huang, C.; Li, C.; Wang, J.; Liu, H.; Wang, X. Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. J. Intell. Manuf. 2021, 32, 77–90. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, G.; Zhang, J.; Zhang, C. Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment. J. Clean. Prod. 2019, 226, 706–719. [Google Scholar] [CrossRef]
- Chung, C.; Wang, P.-C.; Chinomona, B. Optimization of turning parameters based on tool wear and machining cost for various parts. Int. J. Adv. Manuf. Technol. 2022, 120, 5163–5174. [Google Scholar] [CrossRef]
- Abdelnasser, E.; Barakat, A.; Elsanabary, S.; Nassef, A.; Elkaseer, A. Precision Hard Turning of Ti6Al4V Using Polycrystalline Diamond Inserts: Surface Quality, Cutting Temperature and Productivity in Conventional and High-Speed Machining. Materials 2020, 13, 5677. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Gupta, M.K.; Zhao, W.; Khan, A.M. Tool wear mechanisms and its influence on machining tribology of face milled titanium alloy under sustainable hybrid lubri-cooling. Tribol. Int. 2022, 170, 107497. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Chen, N.; Zhou, M.; Chen, Y. A review of tool wear mechanism and suppression method in diamond turning of ferrous materials. Int. J. Adv. Manuf. Technol. 2021, 113, 3027–3055. [Google Scholar] [CrossRef]
- Xi, T.; Benincá, I.M.; Kehne, S.; Fey, M.; Brecher, C. Tool wear monitoring in roughing and finishing processes based on machine internal data. Int. J. Adv. Manuf. Technol. 2021, 113, 3543–3554. [Google Scholar] [CrossRef]
- Marani, M.; Zeinali, M.; Kouam, J.; Songmene, V.; Mechefske, C.K. Prediction of cutting tool wear during a turning process using artificial intelligence techniques. Int. J. Adv. Manuf. Technol. 2020, 111, 505–515. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, X.; Zhang, J.; Jin, H. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations. Sensors 2016, 16, 795. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wang, S.; Yi, L.; Zhu, R.; Cai, B.; Sun, S. Tool life prediction based on particle swarm optimization–back-propagation neural network. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 1742–1752. [Google Scholar] [CrossRef]
- Liu, E.; Wang, R.; Zhang, Y.; An, W. Tool Wear Analysis and Mapping Wear for Cryogenic Machining of Ti-5553 with Uncoated Cemented Carbide. Integr. Ferroelectr. 2022, 227, 28–38. [Google Scholar] [CrossRef]
- Rath, D.; Panda, S. Analysis and prediction of tool wear in dry turning of hardened D3 steel using hybrid insert: A novel wear map approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 1355–1367. [Google Scholar] [CrossRef]
- Younas, M.; Jaffery, S.H.I.; Khan, A.; Khan, M. Development and analysis of tool wear and energy consumption maps for turning of titanium alloy (Ti6Al4V). J. Manuf. Process. 2021, 62, 613–622. [Google Scholar] [CrossRef]
- Bombiński, S.; Błażejak, K.; Nejman, M.; Jemielniak, K. Sensor Signal Segmentation for Tool Condition Monitoring. Procedia CIRP 2016, 46, 155–160. [Google Scholar] [CrossRef]
- Srinivasa Prasad, B.; Siva Prasad, D.; Sandeep, A.; Veeraiah, G. Condition Monitoring of CNC Machining Using Adaptive Control. Int. J. Autom. Comput. 2013, 10, 202–209. [Google Scholar] [CrossRef]
- Aslan, A. Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study. Measurement 2020, 163, 107959. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L. Optimization of process parameters for surface roughness and tool wear in milling TC17 alloy using Taguchi with grey relational analysis. Adv. Mech. Eng. 2021, 13, 1687814021996530. [Google Scholar] [CrossRef]
- Pekşen, H.; Kalyon, A. Optimization and measurement of flank wear and surface roughness via Taguchi based grey relational analysis. Mater. Manuf. Process. 2021, 36, 1865–1874. [Google Scholar] [CrossRef]
- Bhushan, R.K. Minimising tool wear by optimisation (ANOVA) of cutting parameters in machining of 7075Al Alloy SiC particle composite. Aust. J. Mech. Eng. 2023, 21, 499–517. [Google Scholar] [CrossRef]
- Paturi, U.M.R.; Yash, A.; Teja Palakurthy, S.; Reddy, N.S. Modeling and optimization of machining parameters for minimizing surface roughness and tool wear during AISI 52100 steel dry turning. Mater. Today Proc. 2022, 50, 1164–1172. [Google Scholar] [CrossRef]
- Balaji, M.; Venkata Rao, K.; Mohan Rao, N.; Murthy, B.S.N. Optimization of drilling parameters for drilling of TI-6Al-4V based on surface roughness, flank wear and drill vibration. Measurement 2018, 114, 332–339. [Google Scholar] [CrossRef]
- Bhushan, R.K. Optimization of tool wear parameters in machining AA7075/SiC composite. Compos. Part C Open Access 2020, 2, 100035. [Google Scholar] [CrossRef]
- Hassan, M.; Sadek, A.; Attia, M.H.; Thomson, V. Intelligent machining: Real-time tool condition monitoring and intelligent adaptive control systems. J. Mach. Eng. 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Sadek, A.; Shi, B.; Meshreki, M.; Duquesne, J.; Attia, M.H. Prediction and control of drilling-induced damage in fibre-reinforced polymers using a new hybrid force and temperature modelling approach. CIRP Ann. 2015, 64, 89–92. [Google Scholar] [CrossRef]
- Sadek, A.; Hassan, M.; Attia, M.H. A new cyber-physical adaptive control system for drilling of hybrid stacks. CIRP Ann. 2020, 69, 105–108. [Google Scholar] [CrossRef]
- Hassan, M.; Sadek, A.; Attia, M.H. Intelligent cyber-physical monitoring and control of I4.0 machining Systems—An Overview and Future Perspectives. J. Mach. Eng. 2022, 22, 5–24. [Google Scholar] [CrossRef]
- Satyanarayana Kosaraju, V.G.A.; Popuri, B.B. Taguchi analysis on cutting forces and temperature in turning titanium Ti-6Al-4V. Int. J. Mech. Ind. Eng. (IJMIE) 2012, 1, 55–59. [Google Scholar]
- Duan, X.; Peng, F.; Zhu, Z.; Jiang, G. Cutting edge element modeling-based cutter-workpiece engagement determination and cutting force prediction in five-axis milling. Int. J. Adv. Manuf. Technol. 2019, 102, 421–430. [Google Scholar] [CrossRef]
- Asadi, R.; Yeganefar, A.; Niknam, S.A. Optimization and prediction of surface quality and cutting forces in the milling of aluminum alloys using ANFIS and interval type 2 neuro fuzzy network coupled with population-based meta-heuristic learning methods. Int. J. Adv. Manuf. Technol. 2019, 105, 2271–2287. [Google Scholar] [CrossRef]
- Schwenzer, M.; Adams, O.; Klocke, F.; Stemmler, S.; Abel, D. Model-based predictive force control in milling: Determination of reference trajectory. Prod. Eng. 2017, 11, 107–115. [Google Scholar] [CrossRef]
- Schwenzer, M.; Stemmler, S.; Ay, M.; Rüppel, A.K.; Bergs, T.; Abel, D. Model predictive force control in milling based on an ensemble Kalman filter. J. Intell. Manuf. 2022, 33, 1907–1919. [Google Scholar] [CrossRef]
- Radu, P.; Schnakovszky, C. A Review of Proposed Models for Cutting Force Prediction in Milling Parts with Low Rigidity. Machines 2024, 12, 140. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, D.; Coppola, G.; Mao, J.; Sun, W.; Wang, Y.; Ge, Y. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes. Sensors 2016, 16, 70. [Google Scholar] [CrossRef]
- Zuperl, U.; Cus, F.; Reibenschuh, M. Modeling and adaptive force control of milling by using artificial techniques. J. Intell. Manuf. 2012, 23, 1805–1815. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Acar, O.; Gupta, M.K.; Sağlam, H.; Sarikaya, M.; Giasin, K.; Pimenov, D.Y. Parametric Optimization for Cutting Forces and Material Removal Rate in the Turning of AISI 5140. Machines 2021, 9, 90. [Google Scholar] [CrossRef]
- Park, H.-s.; Qi, B.; Dang, D.-V.; Park, D.Y. Development of smart machining system for optimizing feedrates to minimize machining time. J. Comput. Des. Eng. 2017, 5, 299–304. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Yeh, S.-S. Integration of cutting force control and chatter suppression control into automatic cutting feed adjustment system design. Mach. Sci. Technol. 2020, 24, 65–95. [Google Scholar] [CrossRef]
- Mehta, P.; Mears, L. Adaptive control for multistage machining process scenario—Bar turning with varying material properties. Int. J. Adv. Manuf. Technol. 2015, 78, 1265–1273. [Google Scholar] [CrossRef]
- Kahya, M.; Ozbayoglu, M.; Unver, H.O. Precision and energy-efficient ball-end milling of Ti6Al4V turbine blades using particle swarm optimization. Int. J. Comput. Integr. Manuf. 2021, 34, 110–133. [Google Scholar] [CrossRef]
- Jin, S.Y.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S.; Debnath, S. Burr formation and its treatments—A review. Int. J. Adv. Manuf. Technol. 2020, 107, 2189–2210. [Google Scholar] [CrossRef]
- Sharif, A. Study on burr formation, tool wear and surface quality in machining Al6063. J. Mater. Manuf. 2022, 1, 1–9. [Google Scholar]
- Tian, C.; Zhou, G.; Lu, F.; Chen, Z.; Zou, L. An integrated multi-objective optimization approach to determine the optimal feature processing sequence and cutting parameters for carbon emissions savings of CNC machining. Int. J. Comput. Integr. Manuf. 2020, 33, 609–625. [Google Scholar] [CrossRef]
- He, K.; Hong, H.; Tang, R.; Wei, J. Analysis of Multi-Objective Optimization of Machining Allowance Distribution and Parameters for Energy Saving Strategy. Sustainability 2020, 12, 638. [Google Scholar] [CrossRef]
- Singh, O.P.; Kumar, G.; Kumar, M. Role of Taguchi and grey relational method in optimization of machining parameters of different materials: A review. Acta Electron. Malays. (AEM) 2019, 3, 19–22. [Google Scholar] [CrossRef]
- Muthuraman, P.; Karunakaran, K. Optimization of face milling process parameters by GRA with deep cryogenic treated milling cutter. Mater. Today Proc. 2021, 37, 1613–1617. [Google Scholar] [CrossRef]
- Celikag, H.; Ozturk, E.; Sims, N.D. Can mode coupling chatter happen in milling? Int. J. Mach. Tools Manuf. 2021, 165, 103738. [Google Scholar] [CrossRef]
- Jafarzadeh, E.; Movahhedy, M.R. Numerical simulation of interaction of mode-coupling and regenerative chatter in machining. J. Manuf. Process. 2017, 27, 252–260. [Google Scholar] [CrossRef]
- Yuan, L.; Pan, Z.; Ding, D.; Sun, S.; Li, W. A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism. IEEE/ASME Trans. Mechatron. 2018, 23, 2240–2251. [Google Scholar] [CrossRef]
- Navarro-Devia, J.H.; Chen, Y.; Dao, D.V.; Li, H. Chatter detection in milling processes—A review on signal processing and condition classification. Int. J. Adv. Manuf. Technol. 2023, 125, 3943–3980. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Liu, M.-K.; Elsisi, M. Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. 2022, 125, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Postel, M.; Bugdayci, B.; Wegener, K. Ensemble transfer learning for refining stability predictions in milling using experimental stability states. Int. J. Adv. Manuf. Technol. 2020, 107, 4123–4139. [Google Scholar] [CrossRef]
- Yamato, S.; Nakanishi, K.; Suzuki, N.; Kakinuma, Y. Development of Automatic Chatter Suppression System in Parallel Milling by Real-Time Spindle Speed Control with Observer-Based Chatter Monitoring. Int. J. Precis. Eng. Manuf. 2021, 22, 227–240. [Google Scholar] [CrossRef]
- Rahimi, M.H.; Huynh, H.N.; Altintas, Y. On-line chatter detection in milling with hybrid machine learning and physics-based model. CIRP J. Manuf. Sci. Technol. 2021, 35, 25–40. [Google Scholar] [CrossRef]
- Schmitz, T.L.; Smith, K.S. Machining Dynamics: Frequency Response to Improved Productivity, 2nd ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Shi, B.; Attia, H. Applications of Stability Lobes in Optimization of Machining Parameters. Soc. Manuf. Eng. 2007, 18. [Google Scholar]
- Abu-Mahfouz, I.; Banerjee, A.; Rahman, E. Evolutionary Optimization of Machining Parameters Based on Surface Roughness in End Milling of Hot Rolled Steel. Materials 2021, 14, 5494. [Google Scholar] [CrossRef]
- Zarrouk, T.; Nouari, M.; Salhi, J.-E.; Makich, H.; Salhi, M.; Atlati, S.; Salhi, N. Optimization of the milling process for aluminum honeycomb structures. Int. J. Adv. Manuf. Technol. 2022, 119, 4733–4744. [Google Scholar] [CrossRef]
- Lin, J.; Ye, C.; Yang, J.; Zhao, H.; Ding, H.; Luo, M. Contour error-based optimization of the end-effector pose of a 6 degree-of-freedom serial robot in milling operation. Robot. Comput. Integr. Manuf. 2022, 73, 102257. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Moiduddin, K.; Akash, R.; Krishnan, S.; Hammad Mian, S.; Ameen, W.; Alkhalefah, H. Influence of process parameters on dimensional accuracy of machined Titanium (Ti-6Al-4V) alloy in Laser Beam Machining Process. Opt. Laser Technol. 2020, 132, 106494. [Google Scholar] [CrossRef]
- Liu, L.; Qu, D.; Cao, H.; Huang, X.; Song, Y.; Kang, X. Process optimization of high machining efficiency and low surface defects for HSD milling UD-CF/PEEK with limited thermal effect. J. Manuf. Process. 2022, 76, 532–547. [Google Scholar] [CrossRef]
- Ali, A.D.K.; Serradj, N.B.; Ghernaout, M.E.A. Cutting parameter optimization based on online temperature measurements. Eng. Technol. Appl. Sci. Res. 2023, 13, 9861–9866. [Google Scholar]
- Soori, M.; Arezoo, B. A review in machining-induced residual stress. J. New Technol. Mater. 2022, 12, 64–83. [Google Scholar]
- Reddy, P.G.; Gowthaman, S.; Jagadeesha, T. Optimization of cutting parameters based on surface roughness and cutting force during end milling of Nimonic C-263 Alloy. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020. [Google Scholar]
- la Monaca, A.; Murray, J.W.; Liao, Z.; Speidel, A.; Robles-Linares, J.A.; Axinte, D.A.; Hardy, M.C.; Clare, A.T. Surface integrity in metal machining—Part II: Functional performance. Int. J. Mach. Tools Manuf. 2021, 164, 103718. [Google Scholar] [CrossRef]
- Wang, W.; Li, Q.; Jiang, Y. A novel 3D surface topography prediction algorithm for complex ruled surface milling and partition process optimization. Int. J. Adv. Manuf. Technol. 2020, 107, 3817–3831. [Google Scholar] [CrossRef]
- Vázquez, E.; Ciurana, J.; Rodríguez, C.A.; Thepsonthi, T.; Özel, T. Swarm Intelligent Selection and Optimization of Machining System Parameters for Microchannel Fabrication in Medical Devices. Mater. Manuf. Process. 2011, 26, 403–414. [Google Scholar] [CrossRef]
- Kurt, M.; Hartomacioglu, S.; Mutlu, B.; Koklu, U. Minimization of the surface roughness and form error on the milling of free-form surfaces using a grey relational analysis. Mater. Technol 2012, 46, 205–213. [Google Scholar]
- Liu, L.; Zhang, X.; Wan, X.; Zhou, S.; Gao, Z. Digital twin-driven surface roughness prediction and process parameter adaptive optimization. Adv. Eng. Inform. 2022, 51, 101470. [Google Scholar] [CrossRef]
- Escamilla-Salazar, I.G.; Torres-Trevi No, L.; Gonzalez-Ortiz, B. Intelligent parameter identification of machining Ti64 alloy. Int. J. Adv. Manuf. Technol. 2016, 86, 1997–2009. [Google Scholar] [CrossRef]
- Hashmi, K.H.; Zakria, G.; Raza, M.B.; Khalil, S. Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology. Int. J. Adv. Manuf. Technol. 2016, 85, 1847–1856. [Google Scholar] [CrossRef]
- Sivasakthivel, P.S.; Sudhakaran, R. Optimization of machining parameters on temperature rise in end milling of Al 6063 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 2013, 67, 2313–2323. [Google Scholar] [CrossRef]
- Jiang, X.; Li, B.; Wang, L.; Wang, Z.; Li, H. An approach to evaluate the effect of cutting force and temperature on the residual stress generation during milling. Int. J. Adv. Manuf. Technol. 2016, 87, 2305–2317. [Google Scholar] [CrossRef]
- Akhtar, W.; Lazoglu, I.; Liang, S.Y. Prediction and control of residual stress-based distortions in the machining of aerospace parts: A review. J. Manuf. Process. 2022, 76, 106–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Mahfouf, M.; Yates, J.R.; Pinna, C.; Panoutsos, G.; Boumaiza, S.; Greene, R.J.; De Leon, L. Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm. Mater. Manuf. Process. 2011, 26, 508–520. [Google Scholar] [CrossRef]
- Luo, J.; Sun, Y. Optimization of process parameters for the minimization of surface residual stress in turning pure iron material using central composite design. Measurement 2020, 163, 108001. [Google Scholar] [CrossRef]
- Hu, S. A Method of Chatter-Free Milling Parameters Optimization for Processing with High Energy Efficiency. IOP Conf. Ser. Mater. Sci. Eng. 2018, 382, 042038. [Google Scholar] [CrossRef]
- Deng, C.; Feng, Y.; Miao, J.; Ma, Y.; Wei, B. Multi-objective machining parameters optimization for chatter-free milling process considering material removal rate and surface location error. IEEE Access 2019, 7, 183823–183837. [Google Scholar] [CrossRef]
- Wang, J.; Luo, M.; Xu, K.; Tang, K. Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces. J. Manuf. Sci. Eng. 2019, 141, 031001. [Google Scholar] [CrossRef]
- Mokhtari, A.; Jalili, M.M.; Mazidi, A. Optimization of different parameters related to milling tools to maximize the allowable cutting depth for chatter-free machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 230–241. [Google Scholar] [CrossRef]
- Aslan, D.; Altintas, Y. On-line chatter detection in milling using drive motor current commands extracted from CNC. Int. J. Mach. Tools Manuf. 2018, 132, 64–80. [Google Scholar] [CrossRef]
- Richter-Trummer, V.; Koch, D.; Witte, A.; Dos Santos, J.F.; De Castro, P.M.S.T. Methodology for prediction of distortion of workpieces manufactured by high speed machining based on an accurate through-the-thickness residual stress determination. Int. J. Adv. Manuf. Technol. 2013, 68, 2271–2281. [Google Scholar] [CrossRef]
- Llanos, I.; Robles, A.; Condón, J.; Arizmendi, M.; Beristain, A. Deflection error modeling during thin-wall machining. Procedia CIRP 2023, 117, 169–174. [Google Scholar] [CrossRef]
- Agarwal, A.; Desai, K.A. Tool and Workpiece Deflection Induced Flatness Errors in Milling of Thin-walled Components. Procedia CIRP 2020, 93, 1411–1416. [Google Scholar] [CrossRef]
- Aurrekoetxea, M.; Llanos, I.; Zelaieta, O.; López De Lacalle, L.N. Towards advanced prediction and control of machining distortion: A comprehensive review. Int. J. Adv. Manuf. Technol. 2022, 122, 2823–2848. [Google Scholar] [CrossRef]
- Mostaghimi, H.; Park, S.S.; Lee, D.Y.; Nam, S.; Nam, E. Prediction of Tool Tip Dynamics Through Machine Learning and Inverse Receptance Coupling. Int. J. Precis. Eng. Manuf. 2023, 24, 1739–1752. [Google Scholar] [CrossRef]
- Mizoue, Y.; Sencer, B.; Beaucamp, A. Identification and optimization of CNC dynamics in time-dependent machining processes and its validation to fluid jet polishing. Int. J. Mach. Tools Manuf. 2020, 159, 103648. [Google Scholar] [CrossRef]
- Lyu, D.; Song, Y.; Liu, P.; Zhao, W. Screening and optimization method of defect points of G code in three axis NC machining. Int. J. Comput. Integr. Manuf. 2023, 36, 524–541. [Google Scholar] [CrossRef]
- Nghiep, T.N.; Sarhan, A.A.D.; Aoyama, H. Analysis of tool deflection errors in precision CNC end milling of aerospace Aluminum 6061-T6 alloy. Measurement 2018, 125, 476–495. [Google Scholar] [CrossRef]
- Ringgaard, K.; Mohammadi, Y.; Merrild, C.; Balling, O.; Ahmadi, K. Optimization of material removal rate in milling of thin-walled structures using penalty cost function. Int. J. Mach. Tools Manuf. 2019, 145, 103430. [Google Scholar] [CrossRef]
- Umashankar, S.; Manjunath, H.V.; Sumesh, C.S. Experimental and numerical optimization of process parameters for thin wall machining of bearing housings. Mater. Today Proc. 2021, 46, 4925–4934. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Habibi, M. Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System. J. Manuf. Sci. Eng. 2016, 138, 081005–081011. [Google Scholar] [CrossRef]
- Denkena, B.; Bergmann, B.; Stoppel, D. Tool deflection compensation by drive signal-based force reconstruction and process control. Procedia CIRP 2021, 104, 571–575. [Google Scholar] [CrossRef]
- EIA. Industrial Sector Energy Consumption. 2016. Available online: https://www.eia.gov/outlooks/ieo/pdf/industrial.pdf (accessed on 25 September 2023).
- Bi, Z.M.; Wang, L. Optimization of machining processes from the perspective of energy consumption: A case study. J. Manuf. Syst. 2012, 31, 420–428. [Google Scholar] [CrossRef]
- Sihag, N.; Sangwan, K.S. A systematic literature review on machine tool energy consumption. J. Clean. Prod. 2020, 275, 123125. [Google Scholar] [CrossRef]
- Alswat, H.M.; Mativenga, P.T. Modelling the direct and embodied energy requirements of machining. J. Clean. Prod. 2022, 366, 132767. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Wei, Z.; Mushtaq, R.T.; Khan, A.M.; Hegab, H.; Gupta, M.K.; Khanna, N. A state-of-the-art review on sustainability evaluation of machining processes involving the effects of advanced cooling technologies. Int. J. Adv. Manuf. Technol. 2024, 131, 4377–4402. [Google Scholar] [CrossRef]
- Li, J.-G.; Lu, Y.; Zhao, H.; Li, P.; Yao, Y.-X. Optimization of cutting parameters for energy saving. Int. J. Adv. Manuf. Technol. 2014, 70, 117–124. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Wang, N.; Li, J.; Zhang, J. Energy Saving Design Optimization of CNC Machine Tool Feed System: A Data-Model Hybrid Driven Approach. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3809–3820. [Google Scholar] [CrossRef]
- Li, L.; Deng, X.; Zhao, J.; Zhao, F.; Sutherland, J.W. Multi-objective optimization of tool path considering efficiency, energy-saving and carbon-emission for free-form surface milling. J. Clean. Prod. 2018, 172, 3311–3322. [Google Scholar] [CrossRef]
- Akkuş, H.; Yaka, H. Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy. Measurement 2021, 167, 108465. [Google Scholar] [CrossRef]
- Plodzien, M.; Burek, J.; Zylka, L.; Sulkowicz, P. The influence of end mill helix angle on high performance milling process. J. Mech. Sci. Technol. 2020, 34, 817–827. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Tang, Y.; Li, L. An integrated approach of process planning and cutting parameter optimization for energy-aware CNC machining. J. Clean. Prod. 2017, 162, 458–473. [Google Scholar] [CrossRef]
- Kant, G.; Sangwan, K.S. Predictive modelling for energy consumption in machining using artificial neural network. Procedia CIRP 2015, 37, 205–210. [Google Scholar] [CrossRef]
- Warsi, S.S.; Ahmad, R.; Jaffery, S.H.I.; Agha, M.H.; Khan, M. Development of specific cutting energy map for sustainable turning: A study of Al 6061 T6 from conventional to high cutting speeds. Int. J. Adv. Manuf. Technol. 2020, 106, 2949–2960. [Google Scholar] [CrossRef]
- Sihag, N.; Sangwan, K.S. Development of a Multi-criteria Optimization Model for Minimizing Carbon Emissions and Processing Time During Machining. Procedia CIRP 2018, 69, 300–305. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, H.; Fu, Y.; Wan, L.; Liu, W. Optimization of process parameters for minimum energy consumption based on cutting specific energy consumption. J. Clean. Prod. 2017, 166, 1407–1414. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.; Jiang, Z.; Gu, Q.; Yan, W. Multiobjective optimization of machining center process route: Tradeoffs between energy and cost. J. Clean. Prod. 2021, 280, 124171. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, G.; Lu, Q.; Zhang, J.; Xiao, Z.; Wang, R. An integrated decision-making approach on cutting tools and cutting parameters for machining features considering carbon emissions. Int. J. Comput. Integr. Manuf. 2019, 32, 629–641. [Google Scholar] [CrossRef]
Model | A (MPa) | B (MPa) | n | m | C | (1/s) |
---|---|---|---|---|---|---|
JC-1 [79] | 782.7 | 498.4 | 0.28 | 1 | 0.028 | 10−5 |
JC-2 [80] | 896.4 | 649.5 | 0.387 | 0.758 | 0.0093 | 1 |
JC-3 [81] | 870 | 990 | 1.01 | 1.4 | 0.008 | 1 |
JC-4 [82] | 1098 | 1092 | 0.93 | 1.1 | 0.014 | 1 |
n | |||||||
---|---|---|---|---|---|---|---|
869.4 | 640.50 | 0.0013 | −9.57 × 10−4 | 0.0095 | 6.94 × 10−6 | 0.3867 | 323 |
30 | 500 | 0.11 | 1400 | 4.2 × 10−5 | 1100 | 0.5 | 1.16 × 1013 | 2.6 × 1013 |
Cooling Method | Heat Transfer Coefficient (Wm−2 K−1) | |
---|---|---|
Dry cutting [86] | 20 | 10–20 |
High-pressure coolant (HPC) | 20 | 20 × 103–55 × 103 |
Minimum Quantity Lubrication (MQL) [100,101] | 20 | 200–3 × 103 |
Cryogenic machining [95,101] | 20 | 30 × 103–50 × 103 |
Approach | Objective | Methods | Feedback | Machining Process |
---|---|---|---|---|
Offline | Tool wear [149] | An experimental approach using RSM is developed to identify the most significant cutting parameters on surface roughness, flank wear, and acceleration of drill vibration velocity. The optimal parameters are determined using a multi-response optimization algorithm | Acousto-Optic Emission (AOE) signal (laser Doppler vibrometer) | Drilling |
Online | Tool wear [144] | A multi-objective optimization of flank tool wear, cutting forces, and machining vibrations is developed using an experimental RSM-based approach | Cutting forces and vibrations | Turning |
Offline | Tool wear [150] | An experimental procedure is conducted to minimize the flank wear and crater using regression modelling, desirability analysis, and GA algorithms in the machining of Al alloy and SiC composites | - | Turning |
Offline/Online | Tool wear control [21] | Taguchi experimental design and optimization are used to minimize flank wear in the machining of AISI 1050 material, considering cutting speed, feed rate, and tool tip type as the inputs | Tangential cutting force and AE signals | Turning |
Offline/Online | Tool wear control [151] | Model-based force-wear predictor along with delamination and/or thermal damage estimator [152]—stepwise decision making | Motor power signal | Drilling |
Offline/Online | Tool wear control [129] | Multi-objective optimization to minimize tool wear and surface roughness and maximize MRR is developed based on an adaptive neuro-fuzzy inference system (ANFIS) for modelling and the vibration and communication particle swarm optimization (VCPSO) algorithm for the optimization | Cutting forces | Milling |
Approach | Objective | Methods | Feedback | Machining Process |
---|---|---|---|---|
Offline | Tool deflection minimization [216] | A methodology was developed to reduce deflection errors in end milling. Parameters such as lubrication mode (flood, MQL, nano lubrication, dry), axial depth of cut, radial depth of cut, and feed rate were studied experimentally using the Taguchi method. The results showed that the cutting forces and the distance between the tool holder and workpiece have the greatest impact on deflection errors | - | Milling |
Offline | Workpiece deflection constrained [217] | A methodology to maximize MRR is developed considering a penalty cost function of the deflections that occur during thin-wall machining. Radial depth of cut, axial depth of cut, spindle speed, feed per tooth, and number of flutes are considered as the input parameters | - | Milling |
Offline | Tool and workpiece deflection [218] | An experimental design using RSM is conducted to minimize the tool and part deflection in the machining of a thin-wall workpiece considering feedrate, spindle speed, and depth of cut as the cutting parameters | - | Milling |
Offline | Tool deflection [219] | Finite element modeling of the cutting tool and workpiece based on a mechanistic approach to determine cutting forces | - | Milling |
Online | Tool deflection compensation [220] | A method is developed that utilizes the drive signals to compensate for tool deflections. Based on the evaluated forces from the machine tool’s drive signals, the tool path is compensated orthogonal to the feed direction | Drive signal | Milling |
Approach | Objective | Methods | Feedback | Machining Process |
---|---|---|---|---|
Offline | Energy consumption [226] | Multi-objective optimization of cutting parameters to reduce energy consumption and increase production rate in the milling operation of aluminum alloys | - | Milling |
Offline | Energy consumption [235] | Minimization of cutting specific energy consumption and processing time by considering surface roughness, maximum power, and tool life as constraints using a quantum genetic algorithm | - | Milling |
Offline | Carbon emission [27] | Cutting time, machining cost, and carbon emission are minimized using non-cooperative game theory integrated with NSGA-II. Tool path and cutting parameters (feed per tooth, spindle speed, and depth of cut) are optimized based on the developed model and an improved GA algorithm | - | Milling and turning |
Offline | Carbon emission [234] | To minimize carbon emission and machining time, an optimization process is developed based on statistical modelling of process responses considering surface roughness as a constraint and cutting speed, feedrate, and depth of cut as the optimization parameters | - | Turning |
Offline | Energy consumption [236] | The energy consumption and manufacturing time are minimized through a multi-objective optimization of machining center process routes using work step chain intelligent generation algorithm and NSGA-II | - | Milling, boring, and drilling |
Offline | Carbon emission [237] | The optimal cutting parameters and the cutting tool have been selected through a multi-objective optimization of machining carbon emission, time, and cost using the NSGA-II algorithm | - | Turning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gohari, H.; Hassan, M.; Shi, B.; Sadek, A.; Attia, H.; M’Saoubi, R. Cyber–Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era—A Review. Sensors 2024, 24, 2324. https://doi.org/10.3390/s24072324
Gohari H, Hassan M, Shi B, Sadek A, Attia H, M’Saoubi R. Cyber–Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era—A Review. Sensors. 2024; 24(7):2324. https://doi.org/10.3390/s24072324
Chicago/Turabian StyleGohari, Hossein, Mahmoud Hassan, Bin Shi, Ahmad Sadek, Helmi Attia, and Rachid M’Saoubi. 2024. "Cyber–Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era—A Review" Sensors 24, no. 7: 2324. https://doi.org/10.3390/s24072324
APA StyleGohari, H., Hassan, M., Shi, B., Sadek, A., Attia, H., & M’Saoubi, R. (2024). Cyber–Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era—A Review. Sensors, 24(7), 2324. https://doi.org/10.3390/s24072324