Seamless Fusion: Multi-Modal Localization for First Responders in Challenging Environments
Abstract
:1. Introduction
- The FRs need an all-encompassing localization approach. It should provide reasonable locations in all environments, like indoor/outdoor scenarios, dark rooms, smoky/dusty environments, and under harsh conditions. We provide three different tools that are designed for different conditions and that are able to complement each other. Depending on the scenario and in the case that one tool is not working properly, the system is able to automatically switch to the results of another tool that is able to provide a location update in that respective environment. The incorporation of various situations and solutions marks a significant advancement over previous studies [10,11,12], which depend solely on a single method for a specific scenario. Additionally, the majority of the existing research relies on Wireless Sensor Networks that are pre-deployed in the monitored environments [13,14,15].
- Typically, all the available signals are fused in one algorithm—e.g., in a Simultaneous Localization and Mapping (SLAM) [16,17] approach or another sensor fusion approach [18,19,20]—to provide reasonable localization results. The complexity of sensor fusion escalates significantly when the sensors involved lack precision, often resulting in suboptimal localization and mapping outputs. Traditional methods that rely on integrating imprecise signals can lead to increased error propagation and reduced system reliability [21]. In contrast, our proposed high-level fusion method enhances the system’s accuracy and dependability. By leveraging the modularity and integrating multiple robust sources for positional data, our approach not only mitigates the issues associated with the precision of individual sensors but also ensures that the overall system remains resilient against sensor inaccuracies. In contrast to that, in this paper, we fuse the signals at a higher level. This approach provides modularity and robustness to the system since, at most times, there are multiple sources from which to retrieve positional information.
- In this combinatory but simultaneously redundant scheme, the individual tools can benefit from each other. For instance, the Visual self-localization tool can utilize the Fusion or Galileo tools to be initialized faster. Also, the inertial-based localization tool can utilize the rest of the tools to correct its expected drift so as to be as accurate as possible when it is really needed. Contrastingly, most of the previously presented works are contingent upon the simultaneous operation of all the methods and systems to perform effective fusion, thereby risking significant losses in accuracy if an additional sensor integral to the fusion process is absent or malfunctions. These approaches often lack the modular flexibility inherent in our system, which allows for independent operation or collaborative enhancement among the various tools.
- One of the pivotal strengths of this system lies in its development and testing within realistic operational environments, specifically tailored for use by FRs. Unlike the majority of the proposed solutions, which are often evaluated in controlled or simulated settings [22,23], this approach enables a direct comparison of the experimental tool results with real-world accuracy. Additionally, it assesses the system’s viability for real-time application by experienced FRs in active scenarios. This method not only underscores the practical relevance of our system but also enhances its reliability and effectiveness in genuine operational conditions.
2. Related Work
2.1. Visual Self-Localization
2.2. Galileo Self-Localization
2.3. Inertial Self-Localization
2.4. Fusion Self-Localization
3. Methodology
3.1. System Architecture
3.2. Visual Self-Localization
3.3. Galileo Self-Localization
3.4. Inertial Self-Localization
3.5. Fusion Self-Localization
4. Results and Analysis
4.1. Ground Control Points for Evaluation
4.2. Experimental Setup
4.3. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Coast Guard Search and Rescue Statistics. Available online: https://www.bts.gov/content/us-coast-guard-search-and-rescue-statistics-fiscal-year (accessed on 22 February 2024).
- IFARI Capability Gaps International Forum to Advance First Responder Innovation. Available online: https://www.internationalresponderforum.org/services/capability-gaps (accessed on 21 April 2024).
- Tekler, Z.D.; Chong, A. Occupancy prediction using deep learning approaches across multiple space types: A minimum sensing strategy. Build. Environ. 2022, 226, 109689. [Google Scholar] [CrossRef]
- Esrafilian-Najafabadi, M.; Haghighat, F. Occupancy-based HVAC control systems in buildings: A state-of-the-art review. Build. Environ. 2021, 197, 107810. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2017, 21, 2568–2599. [Google Scholar] [CrossRef]
- Pervez, F.; Qadir, J.; Khalil, M.; Yaqoob, T.; Ashraf, U.; Younis, S. Wireless Technologies for Emergency Response: A Comprehensive Review and Some Guidelines. IEEE Access 2018, 6, 71814–71838. [Google Scholar] [CrossRef]
- Leitch, S.G.; Ahmed, Q.Z.; bin Abbas, W.; Hafeez, M.; Laziridis, P.I.; Sureephong, P.; Alade, T. On Indoor Localization Using WiFi, BLE, UWB, and IMU Technologies. Sensors 2023, 23, 8598. [Google Scholar] [CrossRef] [PubMed]
- Long, K.; Zheng, C.; Zhang, K.; Tian, C.; Shen, C. The Adaptive Fingerprint Localization in Dynamic Environment. IEEE Sens. J. 2022, 22, 13562–13580. [Google Scholar] [CrossRef]
- Issa, A.; Kazmouz, M.; Canalda, P.; Spies, F. Impact of Environmental Factors for Wireless Network Based in Indoor Positioning Algorithms. In Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018; pp. 1–8. [Google Scholar]
- Zhu, D.; Ma, Y.; Wang, M.; Yang, J.; Yin, Y.; Liu, S. LSO-FastSLAM: A New Algorithm to Improve the Accuracy of Localization and Mapping for Rescue Robots. Sensors 2022, 22, 1297. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Li, Z.; Pan, Q. Autonomous navigation of a multirotor robot in GNSS-denied environments for search and rescue. Sci. China Inf. Sci. 2022, 66, 139203. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Li, Z.; Li, C.; Meng, Z.; Gao, N.; Zhang, Z. Adaptive Threshold-Based ZUPT for Single IMU-Enabled Wearable Pedestrian Localization. IEEE Internet Things J. 2023, 10, 11749–11760. [Google Scholar] [CrossRef]
- Atif, M.; Ahmad, R.; Ahmad, W.; Zhao, L.; Rodrigues, J.J.P.C. UAV-Assisted Wireless Localization for Search and Rescue. IEEE Syst. J. 2021, 15, 3261–3272. [Google Scholar] [CrossRef]
- Albanese, A.N.; Sciancalepore, V.; Costa-Pérez, X. SARDO: An Automated Search-and-Rescue Drone-Based Solution for Victims Localization. IEEE Trans. Mob. Comput. 2020, 21, 3312–3325. [Google Scholar] [CrossRef]
- Albanese, A.; Sciancalepore, V.; Costa, X.P. First Responders Got Wings: UAVs to the Rescue of Localization Operations in Beyond 5G Systems. IEEE Commun. Mag. 2021, 59, 28–34. [Google Scholar] [CrossRef]
- Li, M.; Hu, K.; Liu, Y.; Hu, E.; Tang, C.; Zhu, H.; Zhou, G. A Multimodal Robust Simultaneous Localization and Mapping Approach Driven by Geodesic Coordinates for Coal Mine Mobile Robots. Remote Sens. 2023, 15, 5093. [Google Scholar] [CrossRef]
- Chen, D.; Xu, K.; Ma, W. Binocular vision localization based on vision SLAM system with multi-sensor fusion. In Proceedings of the 2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL), Zhuhai, China, 12–14 May 2023; pp. 94–97. [Google Scholar]
- Kim, S.; Jo, J.; Resende, P.; Bradai, B.; Jo, K. Loosely-coupled localization fusion system based on track-to-track fusion with bias alignment. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 1926–1932. [Google Scholar]
- Yin, Y.; Zhang, J.; Guo, M.; Ning, X.B.; Wang, Y.; Lu, J. Sensor Fusion of GNSS and IMU Data for Robust Localization via Smoothed Error State Kalman Filter. Sensors 2023, 23, 3676. [Google Scholar] [CrossRef]
- Nubert, J.; Khattak, S.; Hutter, M. Graph-based Multi-sensor Fusion for Consistent Localization of Autonomous Construction Robots. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10048–10054. [Google Scholar]
- Lakshmi, M.S.; Ramana, K.; Pasha, M.; Lakshmi, K.; Parashuram, N.; Bhavsingh, M. Minimizing the Localization Error in Wireless Sensor Networks Using Multi-Objective Optimization Techniques. Int. J. Recent Innov. Trends Comput. Commun. 2022, 10, 306–312. [Google Scholar] [CrossRef]
- Prata, I.; Almeida, A.; de Souza, F.C.; Rosa, P.F.F.; dos Santos, A.F.P. Developing a UAV platform for victim localization on search and rescue operations. In Proceedings of the 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 1–3 June 2022; pp. 721–726. [Google Scholar]
- Tseng, P.Y.; Lin, J.J.; Chan, Y.C.; Chen, A.Y. Real-time indoor localization with visual SLAM for in-building emergency response. Autom. Constr. 2022, 140, 104319. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, F.; Li, H. Image-based camera localization: An overview. Vis. Comput. Ind. Biomed. Art 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Sattler, T.; Leibe, B.; Kobbelt, L. Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1744–1756. [Google Scholar] [PubMed]
- Svärm, L.; Enqvist, O.; Kahl, F.; Oskarsson, M. City-scale localization for cameras with known vertical direction. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1455–1461. [Google Scholar] [CrossRef]
- Schönberger, J.L.; Pollefeys, M.; Geiger, A.; Sattler, T. Semantic visual localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6896–6906. [Google Scholar]
- Hays, J.; Efros, A.A. IM2GPS: Estimating geographic information from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5297–5307. [Google Scholar]
- Kim, H.J.; Dunn, E.; Frahm, J.M. Learned contextual feature reweighting for image geo-localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2136–2145. [Google Scholar]
- Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A convolutional network for real-time 6-dof camera relocalization. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2938–2946. [Google Scholar]
- Walch, F.; Hazirbas, C.; Leal-Taixe, L.; Sattler, T.; Hilsenbeck, S.; Cremers, D. Image-based localization using lstms for structured feature correlation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 627–637. [Google Scholar]
- Kendall, A.; Cipolla, R. Geometric loss functions for camera pose regression with deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5974–5983. [Google Scholar]
- Boin, J.B.; Bobkov, D.; Steinbach, E.; Girod, B. Efficient panorama database indexing for indoor localization. In Proceedings of the International Conference on Content-Based Multimedia Indexing (CBMI), Dublin, Ireland, 4–6 September 2019; pp. 1–7. [Google Scholar]
- Shi, Y.; Yu, X.; Campbell, D.; Li, H. Where am I looking at? Joint location and orientation estimation by cross-view matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4064–4072. [Google Scholar]
- Agostinho, L.R.; Ricardo, N.M.; Pereira, M.I.; Hiolle, A.; Pinto, A.M. A practical survey on visual odometry for autonomous driving in challenging scenarios and conditions. IEEE Access 2022, 10, 72182–72205. [Google Scholar] [CrossRef]
- Barros, M.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A comprehensive survey of visual slam algorithms. Robotics 2022, 11, 24. [Google Scholar] [CrossRef]
- Younes, G.; Asmar, D.; Shammas, E. A survey on non-filter-based monocular visual SLAM systems. arXiv 2016, arXiv:1607.00470. [Google Scholar]
- Linty, N.; Bhuiyan, M.Z.H.; Kirkko-Jaakkola, M. Opportunities and challenges of Galileo E5 wideband real signals processing. In Proceedings of the International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6. [Google Scholar]
- Margaria, D.; Linty, N.; Favenza, A.; Nicola, M.; Musumeci, L.; Falco, G.; Falletti, E.; Pini, M.; Fantino, M.; Dovis, F. Contact!-First acquisition and tracking of IOV Galileo signals. InsideGNSS 2012, 7, 46–55. [Google Scholar]
- Simsky, A.; Sleewaegen, J.M. Experimental and Professional Galileo Receivers. In GALILEO Positioning Technology; Springer: Dordrecht, The Netherlands, 2015; pp. 273–288. [Google Scholar]
- Zangenehnejad, F.; Gao, Y. GNSS smartphones positioning: Advances, challenges, opportunities, and future perspectives. Satell. Navig. 2021, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- van Diggelen, F. Google Analysis Tools for GNSS Raw Measurements, g.co/GNSSTools. In Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 25–29 September 2017. [Google Scholar]
- Kaiser, S.; Wei, Y.; Renaudin, V. Analysis of IMU and GNSS Data Provided by Xiaomi 8 Smartphone. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021; pp. 1–8. [Google Scholar]
- Riley, S.; Lentz, W.; Clare, A. On the Path to Precision - Observations with Android GNSS Observables. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 116–129. [Google Scholar]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones. GPS Solut. 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Dahlke, D.; Kaiser, S.; Bayer, S. Self-Localization: A proposal to equip first responders with a robust and accurate GNSS device. In Proceedings of the 20th Global Information Systems for Crisis Response and Management Conference, ISCRAM 2023, Omaha, NE, USA, 28–31 May 2023; pp. 242–251. [Google Scholar]
- For the Space Programme (EUSPA), E.U.A. Galileo High Accuracy Service (HAS). Available online: https://www.euspa.europa.eu/newsroom-events/news/galileo-high-accuracy-service-goes-live (accessed on 13 March 2024).
- Fernandez-Hernandez, I.; Chamorro-Moreno, A.; Cancela-Diaz, S.; Calle-Calle, J.D.; Zoccarato, P.; Blonski, D.; Senni, T.; de Blas, F.J.; Hernández, C.; Simón, J.; et al. Galileo high accuracy service: Initial definition and performance. GPS Solut. 2022, 26, 65. [Google Scholar] [CrossRef]
- Chamorro-Moreno, A.; Díaz, S.; Garcia, A.; Fernandez-Hernandez, I.; Calle-Calle, J.; Blas, F.; Vazquez, J.; Hernández, C. Early Demonstration of Galileo HAS User Performances. In Proceedings of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, USA, 19–23 September 2022. [Google Scholar]
- Hanssen, Ø. Improving Trails from GPS Trackers with Unreliable and Limited Communication Channels. In Proceedings of the 18th International Conference on Information Systems for Crisis Response and Management, Blacksburg, VA, USA, 23–26 May 2021; pp. 489–502. [Google Scholar]
- Mainetti, L.; Patrono, L.; Sergi, I. A survey on indoor positioning systems. In Proceedings of the 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2014; pp. 111–120. [Google Scholar]
- Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J. Evolution of indoor positioning technologies: A survey. J. Sens. 2017, 2017, 2630413. [Google Scholar] [CrossRef]
- Kunhoth, J.; Karkar, A.; Al-Maadeed, S.; Al-Ali, A. Indoor positioning and wayfinding systems: A survey. Hum.-Centric Comput. Inf. Sci. 2020, 10, 1–41. [Google Scholar] [CrossRef]
- Motroni, A.; Buffi, A.; Nepa, P. A survey on indoor vehicle localization through RFID technology. IEEE Access 2021, 9, 17921–17942. [Google Scholar] [CrossRef]
- El-Sheimy, N.; Li, Y. Indoor navigation: State of the art and future trends. Satell. Navig. 2021, 2, 1–23. [Google Scholar] [CrossRef]
- Galván-Tejada, C.E.; García-Vázquez, J.P.; Galván-Tejada, J.I.; Delgado-Contreras, J.R.; Brena, R.F. Infrastructure-less indoor localization using the microphone, magnetometer and light sensor of a smartphone. Sensors 2015, 15, 20355–20372. [Google Scholar] [CrossRef]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An indoor position-estimation algorithm using smartphone IMU sensor data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- Raudonis, V.; Maskeliunas, R. Trajectory based fuzzy controller for indoor navigation. In Proceedings of the 12th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November 2011; pp. 69–72. [Google Scholar]
- Feng, D.; Wang, C.; He, C.; Zhuang, Y.; Xia, X.G. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation. IEEE Internet Things J. 2020, 7, 3133–3146. [Google Scholar] [CrossRef]
- Landau, Y.; Ben-Moshe, B. STEPS: An indoor navigation framework for mobile devices. Sensors 2020, 20, 3929. [Google Scholar] [CrossRef]
- Bai, N.; Tian, Y.; Liu, Y.; Yuan, Z.; Xiao, Z.; Zhou, J. A high-precision and low-cost IMU-based indoor pedestrian positioning technique. IEEE Sens. J. 2020, 20, 6716–6726. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, D.; Yuan, H. Novel drift reduction methods in foot-mounted PDR system. Sensors 2019, 19, 3962. [Google Scholar] [CrossRef]
- Noh, Y.; Yamaguchi, H.; Lee, U. Infrastructure-free collaborative indoor positioning scheme for time-critical team operations. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 418–432. [Google Scholar] [CrossRef]
- Jang, B.; Kim, H.; wook Kim, J. Survey of landmark-based indoor positioning technologies. Inf. Fusion 2023, 89, 166–188. [Google Scholar] [CrossRef]
- Bai, L.; Ciravegna, F.; Bond, R.; Mulvenna, M. A low cost indoor positioning system using bluetooth low energy. IEEE Access 2020, 8, 136858–136871. [Google Scholar] [CrossRef]
- Weimann, F.; Tomé, P.; Waegli, A.; Aichhorn, K.; Yalak, O.; Hofmann-Wellenhof, B. SARHA–Development of a Sensor-Augmented GPS/EGNOS/Galileo Receiver for Urban and Indoor Environments. In Proceedings of the 7th Geomatic Week, Barcelona, Spain, 20–23 February 2007. [Google Scholar]
- Niedermeier, H.; Eissfeller, B.; Winkel, J.; Pany, T.; Riedl, B.; Wörz, T.; Schweikert, R.; Lagrasta, S.; Lopez-Risueno, G.; Jiminez-Banos, D. DINGPOS: High sensitivity GNSS platform for deep indoor scenarios. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–10. [Google Scholar]
- de Marinis, E.; Andreucci, F.; Gasparini, O.; Uliana, M.; Pucci, F.; Rosi, G.; Fogliuzzi, F. ARIANNA: A Two-stage Autonomous Localization and Tracking System. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation, Montbeliard, France, 28–31 October 2013. [Google Scholar]
- Tolt, G.; Rydell, J.; Bilock, E.; Eek, J.; Andersson, P.; Nygårds, J. Real-time Multi-Sensor Positioning for First Responders. In Proceedings of the 20th Global Information Systems for Crisis Response and Management Conference, ISCRAM 2023, Omaha, NE, USA, 28–31 May 2023; pp. 177–187. [Google Scholar]
- Börner, A.; Baumbach, D.; Buder, M.; Choinowski, A.; Ernst, I.; Funk, E.; Grießbach, D.; Schischmanow, A.; Wohlfeil, J.; Zuev, S. IPS—A vision aided navigation system. Adv. Opt. Technol. 2017, 6, 121–129. [Google Scholar] [CrossRef]
- Wan, G.; Yang, X.; Cai, R.; Li, H.; Zhou, Y.; Wang, H.; Song, S. Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes. In Proceedings of the International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 4670–4677. [Google Scholar]
- Chen, H.; Wu, W.; Zhang, S.; Wu, C.; Zhong, R. A GNSS/LiDAR/IMU pose estimation system based on collaborative fusion of factor map and filtering. Remote Sens. 2023, 15, 790. [Google Scholar] [CrossRef]
- Wen, W.; Bai, X.; Kan, Y.C.; Hsu, L.T. Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera. IEEE Trans. Veh. Technol. 2019, 68, 10651–10662. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Dan, Z.; Wang, H.; Fang, K. 3D LiDAR aided GNSS/INS integration fault detection, localization and integrity assessment in urban canyons. Remote Sens. 2022, 14, 4641. [Google Scholar] [CrossRef]
- Xiong, L.; Kang, R.; Zhao, J.; Zhang, P.; Xu, M.; Ju, R.; Ye, C.; Feng, T. G-VIDO: A vehicle dynamics and intermittent GNSS-aided visual-inertial state estimator for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2021, 23, 11845–11861. [Google Scholar] [CrossRef]
- Bresson, G.; Rahal, M.C.; Gruyer, D.; Revilloud, M.; Alsayed, Z. A cooperative fusion architecture for robust localization: Application to autonomous driving. In Proceedings of the 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 859–866. [Google Scholar]
- Vishal, K.; Jawahar, C.; Chari, V. Accurate localization by fusing images and GPS signals. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 17–24. [Google Scholar]
- Rantakokko, J.; Rydell, J.; Strömbäck, P.; Händel, P.; Callmer, J.; Törnqvist, D.; Gustafsson, F.; Jobs, M.; Grudén, M. Accurate and reliable soldier and first responder indoor positioning: Multisensor systems and cooperative localization. IEEE Wirel. Commun. 2011, 18, 10–18. [Google Scholar] [CrossRef]
- Giuliano, R.; Mazzenga, F.; Petracca, M.; Vari, M. Indoor localization system for first responders in emergency scenario. In Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1821–1826. [Google Scholar]
- Ficco, M.; Palmieri, F.; Castiglione, A. Supporting first responders localization during crisis management. In Proceedings of the 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Santa Catarina, Brazil, 8–10 July 2015; pp. 147–152. [Google Scholar]
- Dhekne, A.; Chakraborty, A.; Sundaresan, K.; Rangarajan, S. TrackIO: Tracking First Responders inside-out. In Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 751–764. [Google Scholar]
- Kaiser, S.; Sand, S.; Linkiewicz, M.; Meißner, H.; Baumbach, D.; Berger, R. An Overall First Responder Tracking and Coordination Framework. IT Prof. 2023, 25, 38–44. [Google Scholar] [CrossRef]
- Chdid, D.; Oueis, R.; Khoury, H.; Asmar, D.; Elhajj, I. Inertial-vision sensor fusion for pedestrian localization. In Proceedings of the International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 1695–1701. [Google Scholar]
- Anacleto, R.; Figueiredo, L.; Almeida, A.; Novais, P. Localization system for pedestrians based on sensor and information fusion. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Liu, F.; Zhang, J.; Wang, J.; Han, H.; Yang, D. An UWB/vision fusion scheme for determining pedestrians’ indoor location. Sensors 2020, 20, 1139. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Liu, R.; Nayyar, A.; Qureshi, B.; Cao, Z. Tightly coupling fusion of UWB ranging and IMU pedestrian dead reckoning for indoor localization. IEEE Access 2021, 9, 164206–164222. [Google Scholar] [CrossRef]
- Chen, L.; Hu, H. IMU/GPS based pedestrian localization. In Proceedings of the 4th Computer Science and Electronic Engineering Conference (CEEC), Colchester, UK, 12–13 September 2012; pp. 23–28. [Google Scholar]
- Huang, H.Y.; Hsieh, C.Y.; Liu, K.C.; Cheng, H.C.; Hsu, S.J.; Chan, C.T. Multi-sensor fusion approach for improving map-based indoor pedestrian localization. Sensors 2019, 19, 3786. [Google Scholar] [CrossRef]
- Message Queue Telemetry Transport (MQTT). Available online: https://mqtt.org (accessed on 19 March 2024).
- Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Computer Vision—ECCV 2006, Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 430–443. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary features. In Computer Vision—ECCV 2010, Proceedings of the 11th European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792. [Google Scholar]
- Stella Vslam. Available online: https://github.com/stella-cv/stella_vslam (accessed on 22 February 2024).
- U-Blox High Precision GNSS Module. Available online: https://www.u-blox.com/en/product/zed-f9p-module (accessed on 21 April 2024).
- Ta, V.C.; Dao, T.K.; Vaufreydaz, D.; Castelli, E. Collaborative smartphone-based user positioning in a multiple-user context using wireless technologies. Sensors 2020, 20, 405. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.K.; Sohn, S.S.; Thrash, T.; Hoelscher, C.; Kapadia, M. Identifying indoor navigation landmarks using a hierarchical multi-criteria decision framework. In Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games, Newcastle Upon Tyne, UK, 28–30 October 2019; pp. 1–11. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
Tool | Mean Error (m) | Std (m) | Min (m) | Max (m) |
---|---|---|---|---|
GLT | 1.73 | 0.69 | 0.24 | 3.33 |
Visual | 0.37 | 0.20 | 0.04 | 0.80 |
INERTIO | 3.37 | 1.92 | 0.18 | 8.73 |
Fusion | 1.74 | 1.79 | 0.04 | 8.73 |
Tool | Mean Error (m) | Std (m) | Min (m) | Max (m) | Availability |
---|---|---|---|---|---|
GLT | 2.17 | 1.32 | 0.24 | 8.47 | 12/37 |
Visual | 0.38 | 0.21 | 0.04 | 0.78 | 17/37 |
INERTIO | 2.03 | 2.32 | 0.06 | 15.83 | 37/37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlke, D.; Drakoulis, P.; Fernández García, A.; Kaiser, S.; Karavarsamis, S.; Mallis, M.; Oliff, W.; Sakellari, G.; Belmonte-Hernández, A.; Alvarez, F.; et al. Seamless Fusion: Multi-Modal Localization for First Responders in Challenging Environments. Sensors 2024, 24, 2864. https://doi.org/10.3390/s24092864
Dahlke D, Drakoulis P, Fernández García A, Kaiser S, Karavarsamis S, Mallis M, Oliff W, Sakellari G, Belmonte-Hernández A, Alvarez F, et al. Seamless Fusion: Multi-Modal Localization for First Responders in Challenging Environments. Sensors. 2024; 24(9):2864. https://doi.org/10.3390/s24092864
Chicago/Turabian StyleDahlke, Dennis, Petros Drakoulis, Anaida Fernández García, Susanna Kaiser, Sotiris Karavarsamis, Michail Mallis, William Oliff, Georgia Sakellari, Alberto Belmonte-Hernández, Federico Alvarez, and et al. 2024. "Seamless Fusion: Multi-Modal Localization for First Responders in Challenging Environments" Sensors 24, no. 9: 2864. https://doi.org/10.3390/s24092864
APA StyleDahlke, D., Drakoulis, P., Fernández García, A., Kaiser, S., Karavarsamis, S., Mallis, M., Oliff, W., Sakellari, G., Belmonte-Hernández, A., Alvarez, F., & Zarpalas, D. (2024). Seamless Fusion: Multi-Modal Localization for First Responders in Challenging Environments. Sensors, 24(9), 2864. https://doi.org/10.3390/s24092864