A Systematic Optimization Method for Permanent Magnet Synchronous Motors Based on SMS-EMOA
Abstract
:1. Introduction
- (1)
- An efficiency simulation method of PMSM based on finite element is established, and the data set of permanent magnet motor structure optimization is formed. It can provide support for motor structure optimization.
- (2)
- An intelligent optimization model for motor structure parameters based on the SMS-EMOA method is established, which is named the Permanent Magnet Synchronous Motor Self-Optimization Lift Algorithm (PMSM-SLA).
2. Methodology
2.1. Physical Analysis of PMSM
2.2. Heuristic Optimization with SMS-EMOA
2.2.1. Description of the Proposed Optimized Method
Algorithm 1. SMS-EMOA |
1: P0 init /* Initialize random population of individuals */ 2: 0 3: repeat 4: generate /* generate offspring by variation */ 5: Reduce /* select best individuals */ 6: 7: until termination condition fulfilled |
Algorithm 2. Reduce(Q) |
1: fast-nondominated-sort /* all fronts of */ 2: /* with lowest */ 3: return /* eliminate detected element */ |
2.2.2. Key Hyperparameter of the Optimizer
- (1)
- Steady-state selection
- (2)
- Population size
2.2.3. Handling of Boundary Solutions
2.2.4. Selection Variants of SMS-EMOA
Algorithm 3. Reduce |
1: [,…,] nondominated-sort /* all v fronts of Q */ 2: if then 3: [] /* with highest */ 4: else 5: r [] /* with lowest */ 6: end if 7: return /* eliminate detected element */ |
2.2.5. Calculation of Contributing Hypervolume
2.3. PMSM Structure Optimization Based on SMS-EMOA
3. Numerical Example
3.1. Experimental Setup
Motor Simulation Calculation
3.2. SPMSM Structure Optimization with SMS-EMOA
3.2.1. Procedure of the Multi-Objective Optimization with SMS-EMOA
Algorithm 4. Fast Non-dominated Sort |
1: Initialize the sets and counters for each individual 2: for each individual do 3: Initialize the set of dominated solutions for 4: 0 Initialize the domination counter for 5: end for 6: Initialize the first Pareto front 7: for each individual do 8: for each individual do 9: if dominates q then 10: Add to s set of dominated solutions: 11: else if dominates then 12: Increment domination counter for 13: end if 14: end for 15: if then 16: Assign rank 1 to 17: Initialize crowding distance for 18: Add to the first Pareto front: 19: end if 20: end for 21: Initialize the set of Pareto fronts 22: Initialize Pareto front counter 23: while do 24: Initialize the next Pareto front 25: for each individual do 26: for each individual do 27: Update domination counter for 28: if then 29: Assign rank to 30: Initialize crowding distance for 31: Add q to the next Pareto front: 32: end if 33: end for 34: end for 35: Increment Pareto front counter 36: Add the next Pareto front to the set of Pareto fronts: 37: end while 38: return Pareto fronts with given by: |
3.2.2. Definition of the Optimization Space
3.2.3. Approaching for Pareto Optimal Solution
3.3. Results and Discussion
3.3.1. Optimization Results and Verification
3.3.2. Hyperparameter Optimization
- (I)
- The best models from the previous generation, those with the lowest error, are selected. These models have performed well and are taken as the foundation for creating the next generation.
- (II)
- With a certain probability, crossover is performed to create offspring. During crossover, the hyperparameters of two parent models are combined to produce a new model. If crossover is not performed, the offspring will be an exact copy of its parent.
- (III)
- The latest offspring undergo mutation, with a certain probability. During mutation, the hyperparameters of the model are slightly changed. This introduces diversity in the population, allowing for an exploration of different regions of the search space.
- (IV)
- The offspring are added to the new population, joining the models from the previous generation.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, J.; Gao, Z.; Liu, R.; Zhu, J.; An, G. Optimal Design of Amorphous Permanent Magnet Synchronous Motor Based on Cogging Torque and Efficiency. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021. [Google Scholar]
- Lee, D.; Balachandran, T.; Sirimanna, S.; Salk, N.; Yoon, A.; Xiao, P.; Macks, J.; Yu, Y.; Lin, S.; Schuh, J.; et al. Detailed Design and Prototyping of a High Power Density Slotless PMSM. IEEE Trans. Ind. Appl. 2023, 59, 1719–1727. [Google Scholar] [CrossRef]
- Lee, D.; Balachandran, T.; Salk, N.; Schuh, J.; Yoon, A.; Xiao, P.; Yu, Y.; Lin, S.; Powell, P.; Haran, K.K. Design and Prototype of a High Power Density Slotless PMSM for Direct Drive Aircraft Propulsion. In Proceedings of the 2021 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, USA, 1–2 April 2021. [Google Scholar]
- Guo, L.; Wang, Y.; Wang, H.; Zhang, Z. Design of high power density double-stator permanent magnet synchronous motor. IET Electr. Power Appl. 2023, 17, 421–431. [Google Scholar] [CrossRef]
- Gao, J.; Wang, G.; Liu, X.; Zhang, W.; Huang, S.; Li, H. Cogging Torque Reduction by Elementary-Cogging-Unit Shift for Permanent Magnet Machines. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Bai, W.; Ran, H. Optimization of Cogging Torque Based on the Improved Bat Algorithm. Int. J. Inf. Technol. Syst. Approach 2023, 16, 1–19. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, S.Z.; Zhu, Z.Q.; Chan, C.C. Analytical Methods for Minimizing Cogging Torque in Permanent-Magnet Machines. IEEE Trans. Magn. 2009, 45, 2023–2031. [Google Scholar] [CrossRef]
- Yan, D.; Yan, Y.; Cheng, Y.; Guo, L.; Shi, T. Research on cogging torque reduction method for permanent magnet synchronous motor accounting for the magnetic pole edge effect. IET Electr. Power Appl. 2024, 18, 64–75. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, X.; Zhao, W. Cogging torque reduction based on segmented skewing magnetic poles with different combinations of pole-arc coefficients in surface-mounted permanent magnet synchronous motors. IET Electr. Power Appl. 2021, 15, 200–213. [Google Scholar] [CrossRef]
- Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- Li, K.; Chen, R.; Fu, G.; Yao, X. Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization. IEEE Trans. Evol. Comput. 2019, 23, 303–315. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef]
- Chhabra, K.; Gupta, A.; Adsule, Y.C.; Ravidas, A.G.; Nanda, S.J. Multi-objective Image Segmentation using SMS-EMOA for Side Scan Sonar Data Analysis. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023. [Google Scholar]
- Shang, K.; Ishibuchi, H. A New Hypervolume-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2020, 24, 839–852. [Google Scholar] [CrossRef]
- Cai, T.; Wang, H. A general convergence analysis method for evolutionary multi-objective optimization algorithm. Inf. Sci. 2024, 663, 120267. [Google Scholar] [CrossRef]
- Bai, W.S.; Guo, X.W.; Peng, F.; Qi, L.; Qin, S. An s-metric selection evolutionary multi-objective optimization algorithm solving u-shaped disassembly line balancing problem. J. Phys. Conf. Ser. 2021, 2024, 012057. [Google Scholar] [CrossRef]
- Fan, Y.; Xin, J.; Yang, L.; Zhou, J.; Luo, C.; Zhou, Y.; Zhang, H. Optimization method for the length of the outsourcing concrete working plane on the main arch rib of a rigid-frame arch bridge based on the NSGA-II algorithm. Structures 2024, 59, 105767. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Gao, J.; Zhang, B.; Gui, L.; Yuan, W.; Li, Z.; Han, S. Multi-objective optimization method for reactor shielding design based on SMS-EMOA. Ann. Nucl. Energy 2023, 194, 110097. [Google Scholar] [CrossRef]
- Opara, K.; Arabas, J. Comparison of mutation strategies in Differential Evolution—A probabilistic perspective. Swarm Evol. Comput. 2018, 39, 53–69. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, T.; Bozhko, S.; Wheeler, P.; Dragicevic, T.; Gerada, C. Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications. Chin. J. Aeronaut. 2022, 35, 233–246. [Google Scholar] [CrossRef]
- Shui, Y.; Li, H.; Sun, J.; Zhang, Q. Approximating robust Pareto fronts by the MEOF-based multiobjective evolutionary algorithm with two-level surrogate models. Inf. Sci. 2024, 657, 119946. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, K.; Yang, S. A strength pareto evolutionary algorithm based on adaptive reference points for solving irregular fronts. Inf. Sci. 2023, 626, 658–693. [Google Scholar] [CrossRef]
- Alias, A.E.; Josh, F.T.; Jarin, T.; Skaria, T. SSO-DRSS Axial Flux sensing in Switching Permanent Magnet Motor for cogging torque mitigation. Meas. Sens. 2024, 31, 101021. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, H.; Ren, J.; Liu, H.; Wang, X.; Zhang, B. An intrusion detection algorithm based on joint symmetric uncertainty and hyperparameter optimized fusion neural network. Expert Syst. Appl. 2024, 244, 123014. [Google Scholar] [CrossRef]
- Si, B.; Ni, Z.; Xu, J.; Li, Y.; Liu, F. Interactive effects of hyperparameter optimization techniques and data characteristics on the performance of machine learning algorithms for building energy metamodeling. Case Stud. Therm. Eng. 2024, 55, 104124. [Google Scholar] [CrossRef]
- Mohan, B.; Badra, J. A novel automated SuperLearner using a genetic algorithm-based hyperparameter optimization. Adv. Eng. Softw. 2023, 175, 103358. [Google Scholar] [CrossRef]
- Hu, C.; Zeng, S.; Li, C. Scalable GP with hyperparameters sharing based on transfer learning for solving expensive optimization problems. Appl. Soft Comput. 2023, 148, 110866. [Google Scholar] [CrossRef]
- Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data Min. Knowl. Discov. 2023, 13, e1484. [Google Scholar] [CrossRef]
- Liu, S.; Chen, G.; Li, Y. Large Language Model Agent for Hyper-Parameter Optimization. arXiv 2024, arXiv:2402.01881. [Google Scholar]
- Morales-Hernández, A.; Van Nieuwenhuyse, I.; Rojas Gonzalez, S. A survey on multi-objective hyperparameter optimization algorithms for machine learning. Artif. Intell. Rev. 2023, 56, 8043–8093. [Google Scholar] [CrossRef]
Parameters | Unit | Range of the Value |
---|---|---|
Rated power | kW | 28~35 |
Length of armature | mm | 75~85 |
Rated speed | r/min | 1800~2100 |
Number of poles | - | 15~25 |
Number of slots | - | 20~30 |
Magnet thickness | mm | 4.9~5.8 |
Pole-arc coefficient | - | 0.835~0.865 |
Parameters | Unit | Range of the Value |
---|---|---|
Rated power | kW | 31 |
Length of armature | mm | 80 |
Rated speed | r/min | 2000 |
Number of poles | - | 20 |
Number of slots | - | 24 |
Magnet thickness | mm | 5.6 |
Pole-arc coefficient | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, B.; Chen, P.; Wang, E.; Yu, J.; Wang, J. A Systematic Optimization Method for Permanent Magnet Synchronous Motors Based on SMS-EMOA. Sensors 2024, 24, 2956. https://doi.org/10.3390/s24092956
Yuan B, Chen P, Wang E, Yu J, Wang J. A Systematic Optimization Method for Permanent Magnet Synchronous Motors Based on SMS-EMOA. Sensors. 2024; 24(9):2956. https://doi.org/10.3390/s24092956
Chicago/Turabian StyleYuan, Bo, Ping Chen, Ershen Wang, Jianrui Yu, and Jian Wang. 2024. "A Systematic Optimization Method for Permanent Magnet Synchronous Motors Based on SMS-EMOA" Sensors 24, no. 9: 2956. https://doi.org/10.3390/s24092956