Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Controlled Release Experiments
2.1.1. Cavity Ring-Down Spectroscopy (CRDS)
2.1.2. Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)
2.1.3. Mid-Infrared Laser Absorption Spectroscopy (MIRA) Instrument
2.1.4. Experimental Method
2.2. Further Analysis
2.2.1. Simulate the Impact of Instruments with a Higher Detection Threshold
2.2.2. Impact of Higher Detection Threshold on Emission Quantification
3. Results
3.1. Observed Methane Mixing Ratios
Comparison of Instrument-Reported Mixing Ratios
3.2. Impact of Simulating Instruments with a Higher Detection Threshold
3.2.1. Emissions Estimates
3.2.2. Impact of Higher Detection Threshold on Emission Quantification
4. Discussion
4.1. Variability in Instrument Response
4.2. Effect of Higher Detection Thresholds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. IPCC Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-41532-4. [Google Scholar]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; ISBN 978-1-00-932584-4. [Google Scholar]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Denmead, O.T. Approaches to Measuring Fluxes of Methane and Nitrous Oxide between Landscapes and the Atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- Pihlatie, M.K.; Christiansen, J.R.; Aaltonen, H.; Korhonen, J.F.J.; Nordbo, A.; Rasilo, T.; Benanti, G.; Giebels, M.; Helmy, M.; Sheehy, J.; et al. Comparison of Static Chambers to Measure CH4 Emissions from Soils. Agric. For. Meteorol. 2013, 171–172, 124–136. [Google Scholar] [CrossRef]
- Collier, S.M.; Ruark, M.D.; Oates, L.G.; Jokela, W.E.; Dell, C.J. Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers. J. Vis. Exp. 2014, 90, 52110. [Google Scholar] [CrossRef] [PubMed]
- Aneja, V.P.; Blunden, J.; Claiborn, C.S.; Rogers, H.H. Dynamic Chamber System to Measure Gaseous Compounds Emissions and Atmospheric-Biospheric Interactions. In Environmental Simulation Chambers: Application to Atmospheric Chemical Processes; Barnes, I., Rudzinski, K.J., Eds.; Nato Science Series: IV: Earth and Environmental Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 62, pp. 97–109. ISBN 978-1-4020-4230-0. [Google Scholar]
- Caulton, D.R.; Li, Q.; Bou-Zeid, E.; Fitts, J.P.; Golston, L.M.; Pan, D.; Lu, J.; Lane, H.M.; Buchholz, B.; Guo, X.; et al. Quantifying Uncertainties from Mobile-Laboratory-Derived Emissions of Well Pads Using Inverse Gaussian Methods. Atmos. Chem. Phys. 2018, 18, 15145–15168. [Google Scholar] [CrossRef]
- Edie, R.; Robertson, A.M.; Field, R.A.; Soltis, J.; Snare, D.A.; Zimmerle, D.; Bell, C.S.; Vaughn, T.L.; Murphy, S.M. Constraining the Accuracy of Flux Estimates Using OTM 33A. Atmos. Meas. Tech. 2020, 13, 341–353. [Google Scholar] [CrossRef]
- Robertson, A.M.; Edie, R.; Field, R.A.; Lyon, D.; McVay, R.; Omara, M.; Zavala-Araiza, D.; Murphy, S.M. New Mexico Permian Basin Measured Well Pad Methane Emissions Are a Factor of 5–9 Times Higher Than U.S. EPA Estimates. Environ. Sci. Technol. 2020, 54, 13926–13934. [Google Scholar] [CrossRef] [PubMed]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.; Allen, G.; Pitt, J.; Kang, M.; Riddick, J.C. The Calibration and Deployment of a Low-Cost Methane Sensor. Atmos. Environ. 2020, 230, 117440. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Ou, L.-X.; Mao, L.-W.; Wu, X.-Y.; Liu, Y.-P.; Lu, H.-L. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef]
- Ou, L.-X.; Liu, M.-Y.; Zhu, L.-Y.; Zhang, D.W.; Lu, H.-L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Lett. 2022, 14, 206. [Google Scholar] [CrossRef]
- Riddick, S.N.; Ancona, R.; Cheptonui, F.; Bell, C.S.; Duggan, A.; Bennett, K.E.; Zimmerle, D.J. A Cautionary Report of Calculating Methane Emissions Using Low-Cost Fence-Line Sensors. Elem. Sci. Anthr. 2022, 10, 00021. [Google Scholar] [CrossRef]
- Golston, L.; Aubut, N.; Frish, M.; Yang, S.; Talbot, R.; Gretencord, C.; McSpiritt, J.; Zondlo, M. Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Localization and Quantification of Emission Rate. Atmosphere 2018, 9, 333. [Google Scholar] [CrossRef]
- Gålfalk, M.; Nilsson Påledal, S.; Bastviken, D. Sensitive Drone Mapping of Methane Emissions without the Need for Supplementary Ground-Based Measurements. ACS Earth Space Chem. 2021, 5, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Commane, R.; Hallward-Driemeier, A.; Murray, L.T. Intercomparison of Commercial Analyzers for Atmospheric Ethane and Methane Observations. Atmos. Meas. Tech. 2023, 16, 1431–1441. [Google Scholar] [CrossRef]
- Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T. Field Intercomparison of Four Methane Gas Analyzers Suitable for Eddy Covariance Flux Measurements. Biogeosciences 2013, 10, 3749–3765. [Google Scholar] [CrossRef]
- O’Keefe, A. Integrated Cavity Output Analysis of Ultra-Weak Absorption. Chem. Phys. Lett. 1998, 293, 331–336. [Google Scholar] [CrossRef]
- Engeln, R.; Berden, G.; Peeters, R.; Meijer, G. Cavity Enhanced Absorption and Cavity Enhanced Magnetic Rotation Spectroscopy. Rev. Sci. Instrum. 1998, 69, 3763–3769. [Google Scholar] [CrossRef]
- Von Bobrutzki, K.; Braban, C.F.; Famulari, D.; Jones, S.K.; Blackall, T.; Smith, T.E.L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; et al. Field Inter-Comparison of Eleven Atmospheric Ammonia Measurement Techniques. Atmos. Meas. Tech. 2010, 3, 91–112. [Google Scholar] [CrossRef]
- Laubach, J.; Kelliher, F.M.; Knight, T.W.; Clark, H.; Molano, G.; Cavanagh, A. Methane Emissions from Beef Cattle—A Comparison of Paddock- and Animal-Scale Measurements. Aust. J. Exp. Agric. 2008, 48, 132. [Google Scholar] [CrossRef]
- Flesch, T.K.; Harper, L.A.; Powell, J.M.; Wilson, J.D. Inverse-Dispersion Calculation of Ammonia Emissions from Wisconsin Dairy Farms. Trans. ASABE 2009, 52, 253–265. [Google Scholar] [CrossRef]
- US EPA. Industrial Source Complex (ISC3) Dispersion Model; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, User’s Guide. EPA 454/B 95 003a (Vol. I) and EPA 454/B 95 003b (Vol. II); 1995. [Google Scholar]
- Sauer, J.A.; Muñoz-Esparza, D.; Canfield, J.M.; Costigan, K.R.; Linn, R.R.; Kim, Y.-J. A Large-Eddy Simulation Study of Atmospheric Boundary Layer Influence on Stratified Flows over Terrain. J. Atmos. Sci. 2016, 73, 2615–2632. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Sauer, J.A.; Linn, R.R.; Kosović, B. Limitations of One-Dimensional Mesoscale PBL Parameterizations in Reproducing Mountain-Wave Flows. J. Atmos. Sci. 2016, 73, 2603–2614. [Google Scholar] [CrossRef]
- Smith, C.M.; Skyllingstad, E.D. Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation. J. Atmos. Sci. 2009, 66, 3147–3164. [Google Scholar] [CrossRef]
- Tao, R.; Ren, H.; Wang, D.; Bai, X. Research on Smoke Simulation with Vortex Shedding. PLoS ONE 2022, 17, e0269114. [Google Scholar] [CrossRef] [PubMed]
- Wastine, B.; Hummelgård, C.; Bryzgalov, M.; Rödjegård, H.; Martin, H.; Schröder, S. Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-Ppm Resolution. Atmosphere 2022, 13, 1789. [Google Scholar] [CrossRef]
- Li, N.; Tao, L.; Yi, H.; Kim, C.S.; Kim, M.; Canedy, C.L.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Meyer, J.R.; et al. Methane Detection Using an Interband-Cascade LED Coupled to a Hollow-Core Fiber. Opt. Express 2021, 29, 7221. [Google Scholar] [CrossRef]
Date | Release Start | Release End | Location: Pad | Emission Rate (kg CH4 h−1) |
---|---|---|---|---|
10 July 2023 | 9:56 | 10:55 | 5 | 5.3 |
12 July 2023 | 10:50 | 12:10 | 5 | 5.2 |
12 July 2023 | 12:13 | 13:12 | 5 | 5.2 |
13 July 2023 | 8:14 | 9:31 | 1 | 0.4 |
13 July 2023 | 9:37 | 10:49 | 5 | 5.2 |
13 July 2023 | 10:51 | 12:00 | 1 | 0.4 |
13 July 2023 | 12:13 | 13:12 | 5 | 5.2 |
13 July 2023 | 13:28 | 14:22 | 5 | 5.2 |
13 July 2023 | 14:52 | 15:47 | 5 | 5.2 |
CRDS | OA-ICOS | MIRA | CRDS | OA-ICOS | MIRA | ||||
---|---|---|---|---|---|---|---|---|---|
Intercept (ppmv) | R2 | ||||||||
CRDS | Slope | - | −0.09 | −0.36 | CRDS | Bias (%) | - | 0.97 | 0.95 |
OA-ICOS | 1.01 | - | 0.44 | OA-ICOS | 0.23 | - | 0.93 | ||
MIRS | 1.05 | 0.95 | - | MIRA | 2.94 | −3.07 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riddick, S.N.; Mbua, M.; Brouwer, R.; Emerson, E.W.; Anand, A.; Kiplimo, E.; Ojomu, S.; Lo, J.-H.; Zimmerle, D.J. Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure. Sensors 2024, 24, 3407. https://doi.org/10.3390/s24113407
Riddick SN, Mbua M, Brouwer R, Emerson EW, Anand A, Kiplimo E, Ojomu S, Lo J-H, Zimmerle DJ. Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure. Sensors. 2024; 24(11):3407. https://doi.org/10.3390/s24113407
Chicago/Turabian StyleRiddick, Stuart N., Mercy Mbua, Ryan Brouwer, Ethan W. Emerson, Abhinav Anand, Elijah Kiplimo, Seunfunmi Ojomu, Jui-Hsiang Lo, and Daniel J. Zimmerle. 2024. "Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure" Sensors 24, no. 11: 3407. https://doi.org/10.3390/s24113407
APA StyleRiddick, S. N., Mbua, M., Brouwer, R., Emerson, E. W., Anand, A., Kiplimo, E., Ojomu, S., Lo, J. -H., & Zimmerle, D. J. (2024). Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure. Sensors, 24(11), 3407. https://doi.org/10.3390/s24113407