Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu2+ Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Characterizations
2.2. Preparation of 4-MBA-AuNPs/CdS/FTO Composites
2.3. Electrochemical Signal Test
3. Results and Discussion
3.1. Material Characterization
3.2. Working Principle of Electrochemical Detection
3.3. Electrochemical Testing
3.4. Specificity and Long-Term Stability
3.5. Detection of Real Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, P.; Guo, K.; Pu, Q.; Wang, Z.; Lin, P.; Qin, S.; Khan, N.; Hur, J.; Liang, H.; Wu, M. oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Front. Immunol. 2020, 11, 1696. [Google Scholar] [CrossRef] [PubMed]
- Servin, A.D.; Pagano, L.; Castillo-Michel, H.; Torre-Roche, R.D.l.; Hawthorne, J.; Hernandez-Viezcas, J.A.; Loredo-Portales, R.; Majumdar, S.; Gardea-Torresday, J.; Dhankher, O.P.; et al. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology 2017, 11, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Gao, X.; Lu, H.-J.; Nie, C.; Wang, J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord. Chem. Rev. 2023, 476, 214927. [Google Scholar] [CrossRef]
- Chang, H.; Karan, N.S.; Shin, K.; Bootharaju, M.S.; Nah, S.; Chae, S.I.; Baek, W.; Lee, S.; Kim, J.; Son, Y.J.; et al. Highly Fluorescent Gold Cluster Assembly. J. Am. Chem. Soc. 2021, 143, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-C.; Wang, X.-N.; Liu, L.; Wen, Q.; Yu, R.-Q.; Jiang, J.-H. Surface Enhanced Laser Desorption Ionization of Phospholipids on Gold Nanoparticles for Mass Spectrometric Immunoassay. Anal. Chem. 2016, 88, 9881–9884. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.-C.; Li, L.-K.; Lai, S.-L.; Cheung, W.-L.; Ng, M.; Wong, C.-Y.; Chan, M.-Y.; Yam, V.W.-W. Design Strategy towards Horizontally Oriented Luminescent Tetradentate-Ligand-Containing Gold(III) Systems. Angew. Chem. Int. Ed. 2020, 59, 21023–21031. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Chen, L.; Yang, P. Colorimetric determination of ferrous ion via morphology transition of gold nanorods. Microchim. Acta 2017, 185, 76. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Maduraiveeran, G. Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends Environ. Anal. Chem. 2017, 14, 28–36. [Google Scholar] [CrossRef]
- Wang, N.; Dai, H.; Sai, L.; Ma, H.; Lin, M. Copper ion-assisted gold nanoparticle aggregates for electrochemical signal amplification of lipopolysaccharide sensing. Biosens. Bioelectron. 2019, 126, 529–534. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Qi, Y.; Yuan, Y.; Gao, J.; Luo, X.; Yang, T. Embedded Au Nanoparticles-Based Ratiometric Electrochemical Sensing Strategy for Sensitive and Reliable Detection of Copper Ions. Anal. Chem. 2019, 91, 12006–12013. [Google Scholar] [CrossRef]
- Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X.-Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y.; et al. A Redox-Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angew. Chem. Int. Ed. 2020, 59, 5273–5277. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Y.; Jiang, L.; Liu, M.; Liu, F.; Jia, M.; Li, J.; Lai, Y. Photoelectrochemical Determination of Cu2+ Using a WO3/CdS Heterojunction Photoanode. ACS Appl. Mater. Interfaces 2019, 11, 37541–37549. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, M.; Chen, Z.; Bu, Y.; Gao, X.; Sui, Y.; Yu, Y. Sodium Alginate Micelle-Encapsulating Zinc Phthalocyanine Dye-Sensitized Photoelectrochemical Biosensor with CdS as the Photoelectric Material for Hg2+ Detection. ACS Appl. Mater. Interfaces 2021, 13, 16828–16836. [Google Scholar] [CrossRef] [PubMed]
- Okoth, O.K.; Yan, K.; Feng, J.; Zhang, J. Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sens. Actuators B Chem. 2018, 256, 334–341. [Google Scholar] [CrossRef]
- Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Wang, L.; Shi, X.; Jia, Y.; Cheng, H.; Wang, L.; Wang, Q. Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chin. Chem. Lett. 2021, 32, 1869–1878. [Google Scholar] [CrossRef]
- Yin, G.; Liu, C.; Shi, T.; Ji, D.; Yao, Y.; Chen, Z. Porous BiVO4 coupled with CuFeO2 and NiFe layered double hydroxide as highly-efficient photoanode toward boosted photoelectrochemical water oxidation. J. Photochem. Photobiol. A 2022, 426, 113742. [Google Scholar] [CrossRef]
- Kong, L.-X.; Zhang, Y.-X.; Zhang, W.-G.; Zhang, Y.-S.; Yan, T.-Y.; Geng, P.-C.; Wang, B. Lab-on-tip: Protruding-shaped all-fiber plasmonic microtip probe toward in-situ chem-bio detection. Sens. Actuators B Chem. 2019, 301, 127128. [Google Scholar] [CrossRef]
- Vala, M.; Ertsgaard, C.T.; Wittenberg, N.J.; Oh, S.-H. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry. ACS Sens. 2019, 4, 3265–3274. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, Y.; Qin, X.; Wang, Y.; Yuan, C.; Xu, Y. Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Microchim. Acta 2019, 186, 161. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Cullen, D.A.; Xie, Z.; Lian, T. Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Lett. 2020, 20, 4322–4329. [Google Scholar] [CrossRef] [PubMed]
- Besteiro, L.V.; Kong, X.-T.; Wang, Z.; Hartland, G.; Govorov, A.O. Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics 2017, 4, 2759–2781. [Google Scholar] [CrossRef]
- Brown, A.M.; Sundararaman, R.; Narang, P.; Goddard, W.A., III; Atwater, H.A. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano 2016, 10, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Manjavacas, A.; Liu, J.G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano 2014, 8, 7630–7638. [Google Scholar] [CrossRef] [PubMed]
- Sundararaman, R.; Narang, P.; Jermyn, A.S.; Goddard Iii, W.A.; Atwater, H.A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Gao, Y.; Yan, J.; Wu, Y.; Di, J. Visual detection of glucose using triangular silver nanoplates and gold nanoparticles. RSC Adv. 2017, 7, 29122–29128. [Google Scholar] [CrossRef]
- Zhou, M.; Han, L.; Deng, D.; Zhang, Z.; He, H.; Zhang, L.; Luo, L. 4-mercaptobenzoic acid modified silver nanoparticles-enhanced electrochemical sensor for highly sensitive detection of Cu2+. Sens. Actuators B Chem. 2019, 291, 164–169. [Google Scholar] [CrossRef]
- Ren, X.; Song, Y.; Liu, A.; Zhang, J.; Yang, P.; Zhang, J.; An, M. Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte. RSC Adv. 2015, 5, 64997–65004. [Google Scholar] [CrossRef]
- Zhang, F.; Zhuang, H.-Q.; Zhang, W.; Yin, J.; Cao, F.-H.; Pan, Y.-X. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water. Catal. Today 2019, 330, 203–208. [Google Scholar] [CrossRef]
- Shi, X.; Lin, X.; Liu, S.; Li, A.; Chen, X.; Zhou, J.; Ma, Z.; Song, H. Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries. Chem. Eng. J. 2019, 372, 269–276. [Google Scholar] [CrossRef]
- Liang, S.; Han, B.; Liu, X.; Chen, W.; Peng, M.; Guan, G.; Deng, H.; Lin, Z. 3D spatially branched hierarchical Z-scheme CdS-Au nanoclusters-ZnO hybrids with boosted photocatalytic hydrogen evolution. J. Alloys Compd. 2018, 754, 105–113. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Wang, M.; Tu, L.-H.; Wang, A.-J.; Luo, X.; Mei, L.-P.; Zhao, T.; Feng, J.-J. Nanosheets-assembled hollow CdIn2S4 microspheres-based photoelectrochemical and fluorescent dual-mode aptasensor for highly sensitive assay of 17β-estradiol based on magnetic separation and enzyme catalytic amplification. Sens. Actuators B Chem. 2021, 347, 130553. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Zhu, G.; Wang, Q.J. Emerging High-Performance SnS/CdS Nanoflower Heterojunction for Ultrafast Photonics. ACS Appl. Mater. Interfaces 2020, 12, 43098–43105. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Manzoori, J.L.; Hallaj, T.; Azizi, N. Sulfur and nitrogen co-doped carbon quantum dots as the chemiluminescence probe for detection of Cu2+ ions. J. Lumin. 2017, 182, 246–251. [Google Scholar] [CrossRef]
- Cheng, B.; Zhou, L.; Lu, L.; Liu, J.; Dong, X.; Xi, F.; Chen, P. Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens. Actuators B Chem. 2018, 259, 364–371. [Google Scholar] [CrossRef]
- Amjadi, M.; Abolghasemi-Fakhri, Z. Gold nanostar-enhanced chemiluminescence probe for highly sensitive detection of Cu(II) ions. Sens. Actuators B Chem. 2018, 257, 629–634. [Google Scholar] [CrossRef]
- Wu, T.; Xu, T.; Ma, Z. Sensitive electrochemical detection of copper ions based on the copper(ii) ion assisted etching of Au@Ag nanoparticles. Analyst 2015, 140, 8041–8047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, B.; Zhang, L.; Jiang, H. An optical sensor for Cu(ii) detection with upconverting luminescent nanoparticles as an excitation source. Chem. Commun. 2012, 48, 4860–4862. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Tang, S.; Li, W.; Nie, Z.; Liu, Z.; Huang, Y.; Yao, S. A novel DNA-templated click chemistry strategy for fluorescent detection of copper(ii) ions. Chem. Commun. 2012, 48, 281–283. [Google Scholar] [CrossRef]
- Kim, M.H.; Jang, H.H.; Yi, S.; Chang, S.-K.; Han, M.S. Coumarin-derivative-based off–on catalytic chemodosimeter for Cu2+ ions. Chem. Commun. 2009, 32, 4838–4840. [Google Scholar] [CrossRef]
- Cho, S.W.; Rao, A.S.; Bhunia, S.; Reo, Y.J.; Singha, S.; Ahn, K.H. Ratiometric fluorescence detection of Cu(II) with a keto-dipicolylamine ligand: A mechanistic implication. Sens. Actuators B Chem. 2019, 279, 204–212. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Yang, X. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Nanotechnology 2010, 21, 205502. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, W.; Tang, S.; Hu, Y.; Nie, Z.; Huang, Y.; Yao, S. A simple “clickable” biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles. Biosens. Bioelectron. 2013, 41, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Chen, X.; Yang, B.; Yang, L.; Jiang, C.; Zhang, Z. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions. Nanoscale 2016, 8, 5977–5984. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Bai, Z.; Chen, Y.; Zu, F.; Li, X.; Xu, J.; Chen, L. Ratiometric fluorescent detection of copper ions using coumarin-functionalized carbon dots based on FRET. Sens. Actuators B Chem. 2018, 275, 86–94. [Google Scholar] [CrossRef]
Sample | Spiked (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Tap water | 300 | 298.9 ± 23.3 | 99.6 | 1.5 |
600 | 628.6 ± 13.8 | 104.8 | 2.5 | |
800 | 804.7 ± 11.7 | 100.6 | 0.4 | |
Sea water | 300 | 314.9 ± 2.1 | 104.9 | 0.8 |
600 | 622.2 ± 6.1 | 103.7 | 0.6 | |
800 | 831.3 ± 19.9 | 103.9 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Zhao, M.; Zhang, B.; Zhao, M.; Ma, Y. Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu2+ Detection. Sensors 2024, 24, 3809. https://doi.org/10.3390/s24123809
Chen F, Zhao M, Zhang B, Zhao M, Ma Y. Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu2+ Detection. Sensors. 2024; 24(12):3809. https://doi.org/10.3390/s24123809
Chicago/Turabian StyleChen, Feng, Mingfu Zhao, Bin Zhang, Minggang Zhao, and Ye Ma. 2024. "Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu2+ Detection" Sensors 24, no. 12: 3809. https://doi.org/10.3390/s24123809
APA StyleChen, F., Zhao, M., Zhang, B., Zhao, M., & Ma, Y. (2024). Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu2+ Detection. Sensors, 24(12), 3809. https://doi.org/10.3390/s24123809