Discrete Relationships between Spatiotemporal Gait Characteristics and Domain-Specific Neuropsychological Performance in Midlife
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Participants
2.2. Clinical Assessment
2.3. Gait Assessment and Extraction of Spatiotemporal Gait Characteristics
- (i)
- Pace: velocity (centimetres/second), stride length (centimetres), and step length (centimetres);
- (ii)
- Rhythm: single-support time (seconds), swing time (seconds), step time (seconds), stance time (seconds), stride time (seconds), and cadence (steps/minute);
- (iii)
- Variability: Stride standard deviation (SD), step length SD, stride velocity SD, stride SD, step SD, swing SD, and stance SD, single-support SD and double-support time SD;
- (iv)
- Phases: single-support time as a % of gait cycle (percentage), double-support time (both values in seconds and percentage of gait cycle), swing time as a % of gait cycle (percentage) and stance time as a % of gait cycle (percentage);
- (v)
- Support: measured primarily as stride width (centimetres).
2.4. Neuropsychological Assessment
2.5. Statistical Analysis
3. Results
3.1. Cohort Details and Neuropsychological Performance
3.2. Gait Characteristics in Individuals with Midlife Type 2 Diabetes Mellitus
3.3. Relationships between Gait Prameters and Neuropsychological Performance
3.4. Principal Components Analysis of Gait Performance
3.5. Associations between PCA Components and Neuropsychological Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dukelow, T.; Lawrence, E.G.; Jacobson, L.; Vassilev, P.; Koychev, I.; Muhammed, K.; Kennelly, S.P. Modifiable risk factors for dementia, and awareness of brain health behaviors: Results from the Five Lives Brain Health Ireland Survey (FLBHIS). Front. Psychol. 2022, 13, 1070259. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- See, R.S.; Thompson, F.; Russell, S.; Quigley, R.; Esterman, A.; Harriss, L.R.; Hyde, Z.; Taylor, S.; Radford, K.; LoGiudice, D.; et al. Potentially modifiable dementia risk factors in all Australians and within population groups: An analysis using cross-sectional survey data. Lancet Public Health 2023, 8, e717–e725. [Google Scholar] [CrossRef] [PubMed]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Vittinghoff, E.; Dublin, S.; Peltz, C.B.; Fleckenstein, L.E.; Rosenberg, D.E.; Barnes, D.E.; Balderson, B.H.; Larson, E.B. Effect of Personalized Risk-Reduction Strategies on Cognition and Dementia Risk Profile Among Older Adults: The SMARRT Randomized Clinical Trial. JAMA Intern. Med. 2024, 184, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Salzman, T.; Sarquis-Adamson, Y.; Son, S.; Montero-Odasso, M.; Fraser, S. Associations of Multidomain Interventions With Improvements in Cognition in Mild Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e226744. [Google Scholar] [CrossRef] [PubMed]
- Rosano, C.; Snitz, B.E. Predicting Dementia from Decline in Gait Speed: Are We There Yet? J. Am. Geriatr. Soc. 2018, 66, 1659–1660. [Google Scholar] [CrossRef] [PubMed]
- Rosso, A.L.; Studenski, S.A.; Chen, W.G.; Aizenstein, H.J.; Alexander, N.B.; Bennett, D.A.; Black, S.E.; Camicioli, R.; Carlson, M.C.; Ferrucci, L.; et al. Aging, the central nervous system, and mobility. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- White, D.K.; Neogi, T.; Nevitt, M.C.; Peloquin, C.E.; Zhu, Y.; Boudreau, R.M.; Cauley, J.A.; Ferrucci, L.; Harris, T.B.; Satterfield, S.M.; et al. Trajectories of gait speed predict mortality in well-functioning older adults: The Health, Aging and Body Composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 456–464. [Google Scholar] [CrossRef]
- Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.J.; Kurita, S.; Shimada, H. Rethinking the Relationship Between Spatiotemporal Gait Variables and Dementia: A Prospective Study. J. Am. Med. Dir. Assoc. 2019, 20, 899–903. [Google Scholar] [CrossRef]
- Dumurgier, J.; Artaud, F.; Touraine, C.; Rouaud, O.; Tavernier, B.; Dufouil, C.; Singh-Manoux, A.; Tzourio, C.; Elbaz, A. Gait Speed and Decline in Gait Speed as Predictors of Incident Dementia. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 655–661. [Google Scholar] [CrossRef]
- Peel, N.M.; Alapatt, L.J.; Jones, L.V.; Hubbard, R.E. The Association Between Gait Speed and Cognitive Status in Community-Dwelling Older People: A Systematic Review and Meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Kitamura, A.; Seino, S.; Murayama, H.; Amano, H.; Nofuji, Y.; Nishi, M.; Yokoyama, Y.; Shinozaki, T.; Yokota, I.; et al. Gait Performance Trajectories and Incident Disabling Dementia Among Community-Dwelling Older Japanese. J. Am. Med. Dir. Assoc. 2017, 18, e113–e192.e120. [Google Scholar] [CrossRef] [PubMed]
- Grande, G.; Triolo, F.; Nuara, A.; Welmer, A.K.; Fratiglioni, L.; Vetrano, D.L. Measuring gait speed to better identify prodromal dementia. Exp. Gerontol. 2019, 124, 110625. [Google Scholar] [CrossRef]
- Kikkert, L.H.J.; Vuillerme, N.; van Campen, J.P.; Hortobágyi, T.; Lamoth, C.J. Walking ability to predict future cognitive decline in old adults: A scoping review. Ageing Res. Rev. 2016, 27, 1–14. [Google Scholar] [CrossRef]
- Darweesh, S.K.L.; Licher, S.; Wolters, F.J.; Koudstaal, P.J.; Ikram, M.K.; Ikram, M.A. Quantitative gait, cognitive decline, and incident dementia: The Rotterdam Study. Alzheimers Dement. 2019, 15, 1264–1273. [Google Scholar] [CrossRef]
- Killane, I.; Donoghue, O.A.; Savva, G.M.; Cronin, H.; Kenny, R.A.; Reilly, R.B. Relative association of processing speed, short-term memory and sustained attention with task on gait speed: A study of community-dwelling people 50 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1407–1414. [Google Scholar] [CrossRef]
- Taylor, M.E.; Delbaere, K.; Mikolaizak, A.S.; Lord, S.R.; Close, J.C. Gait parameter risk factors for falls under simple and dual task conditions in cognitively impaired older people. Gait Posture 2013, 37, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The role of executive function and attention in gait. Mov. Disord. 2008, 23, 329–342, quiz 472. [Google Scholar] [CrossRef]
- Holtzer, R.; Verghese, J.; Xue, X.; Lipton, R.B. Cognitive processes related to gait velocity: Results from the Einstein Aging Study. Neuropsychology 2006, 20, 215–223. [Google Scholar] [CrossRef]
- Holtzer, R.; Mahoney, J.; Verghese, J. Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.H.; Briggs, R.; Laird, E.; Hoey, L.; Hughes, C.F.; McNulty, H.; Ward, M.; Strain, J.J.; Molloy, A.M.; Cunningham, C.; et al. Glycated haemoglobin (HbA(1c)), diabetes and neuropsychological performance in community-dwelling older adults. Diabet. Med. 2021, 38, e14668. [Google Scholar] [CrossRef] [PubMed]
- Nazaribadie, M.; Amini, M.; Ahmadpanah, M.; Asgari, K.; Jamlipaghale, S.; Nazaribadie, S. Executive functions and information processing in patients with type 2 diabetes in comparison to pre-diabetic patients. J. Diabetes Metab. Disord. 2014, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wu, X. Slower maximal walking speed is associated with poorer global cognitive function among older adults residing in China. PeerJ 2022, 10, e13809. [Google Scholar] [CrossRef] [PubMed]
- Umegaki, H.; Makino, T.; Yanagawa, M.; Nakashima, H.; Kuzuya, M.; Sakurai, T.; Toba, K. Maximum gait speed is associated with a wide range of cognitive functions in Japanese older adults with a Clinical Dementia Rating of 0.5. Geriatr. Gerontol. Int. 2018, 18, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.J.H.; Caspi, A.; Ambler, A.; Broadbent, J.M.; Cohen, H.J.; d’Arbeloff, T.; Elliott, M.; Hancox, R.J.; Harrington, H.; Hogan, S.; et al. Association of Neurocognitive and Physical Function With Gait Speed in Midlife. JAMA Netw. Open 2019, 2, e1913123. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cattaneo, G.; Yu, W.; Lo, O.Y.; Gouskova, N.A.; Delgado-Gallén, S.; Redondo-Camós, M.; España-Irla, G.; Solana-Sánchez, J.; Tormos, J.M.; et al. The age-related contribution of cognitive function to dual-task gait in middle-aged adults in Spain: Observations from a population-based study. Lancet Healthy Longev. 2023, 4, e98–e106. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.H.; McKenna, L.; Batten, I.; Jones, K.; Widdowson, M.; Dunne, J.; Conlon, N.; Reilly, R.; Woods, C.P.; O’Neill, D.; et al. Peripheral Inflammation and Cognitive Performance in Middle-Aged Adults With and Without Type 2 Diabetes: Results From the ENBIND Study. Front. Aging Neurosci. 2020, 12, 605878. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.H.; McKenna, L.; Gamage, G.; Bourke, N.M.; Killane, I.; Widdowson, M.; Woods, C.P.; Gibney, J.; Reilly, R.; O’Neill, D.; et al. Cognitive performance in midlife type 2 diabetes: Results from the ENBIND study. Diabet. Med. 2021, 38, e14412. [Google Scholar] [CrossRef]
- Herings, P.M.R.; Dyer, A.H.; Kennelly, S.P.; Reid, S.; Killane, I.; McKenna, L.; Bourke, N.M.; Woods, C.P.; O’Neill, D.; Gibney, J.; et al. Gait Characteristics and Cognitive Function in Middle-Aged Adults with and without Type 2 Diabetes Mellitus: Data from ENBIND. Sensors 2022, 22, 5710. [Google Scholar] [CrossRef]
- Meijer, J.W.; Smit, A.J.; Sonderen, E.V.; Groothoff, J.W.; Eisma, W.H.; Links, T.P. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: The Diabetic Neuropathy Symptom score. Diabet. Med. 2002, 19, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Kenny, R.A.; Coen, R.F.; Frewen, J.; Donoghue, O.A.; Cronin, H.; Savva, G.M. Normative values of cognitive and physical function in older adults: Findings from the Irish Longitudinal Study on Ageing. J. Am. Geriatr. Soc. 2013, 61 (Suppl. S2), S279–S290. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, M.; Nguyen, V.; McNeil, J.J.; Woods, R.L.; Nelson, M.R.; Shah, R.C.; Storey, E.; Murray, A.M.; Reid, C.M.; Kirpach, B.; et al. Psychometric properties of a short form of the Center for Epidemiologic Studies Depression (CES-D-10) scale for screening depressive symptoms in healthy community dwelling older adults. Gen. Hosp. Psychiatry 2018, 51, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Latt, M.D.; Tiedemann, A.; Mun San Kwan, M.; Lord, S.R. Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture 2004, 20, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Wittwer, J.E.; Feller, J.A. Validity of the GAITRite walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 2005, 22, 317–321. [Google Scholar] [CrossRef]
- Briggs, R.; Donoghue, O.A.; Carey, D.; O’Connell, M.D.L.; Newman, L.; Kenny, R.A. What Is the Relationship Between Orthostatic Blood Pressure and Spatiotemporal Gait in Later Life? J. Am. Geriatr. Soc. 2020, 68, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, O.A.; Leahy, S.; Kenny, R.A. Longitudinal Associations Between Gait, Falls, and Disability in Community-Dwelling Older Adults With Type II Diabetes Mellitus: Findings From The Irish Longitudinal Study on Ageing (TILDA). J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Egerházi, A.; Berecz, R.; Bartók, E.; Degrell, I. Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 746–751. [Google Scholar] [CrossRef]
- Juncos-Rabadán, O.; Pereiro, A.X.; Facal, D.; Reboredo, A.; Lojo-Seoane, C. Do the Cambridge Neuropsychological Test Automated Battery episodic memory measures discriminate amnestic mild cognitive impairment? Int. J. Geriatr. Psychiatry 2014, 29, 602–609. [Google Scholar] [CrossRef]
- Karlsen, R.H.; Karr, J.E.; Saksvik, S.B.; Lundervold, A.J.; Hjemdal, O.; Olsen, A.; Iverson, G.L.; Skandsen, T. Examining 3-month test-retest reliability and reliable change using the Cambridge Neuropsychological Test Automated Battery. Appl. Neuropsychol. Adult 2022, 29, 146–154. [Google Scholar] [CrossRef]
- Soldan, A.; Pettigrew, C.; Moghekar, A.; Albert, M. Computerized Cognitive Tests Are Associated with Biomarkers of Alzheimer’s Disease in Cognitively Normal Individuals 10 Years Prior. J. Int. Neuropsychol. Soc. 2016, 22, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Peng, S.; Zhang, H.; Sun, H.; Hu, J. Gait Parameters and Peripheral Neuropathy in Patients With Diabetes: A Meta-Analysis. Front. Endocrinol. 2022, 13, 891356. [Google Scholar] [CrossRef] [PubMed]
- Roman de Mettelinge, T.; Delbaere, K.; Calders, P.; Gysel, T.; Van Den Noortgate, N.; Cambier, D. The impact of peripheral neuropathy and cognitive decrements on gait in older adults with type 2 diabetes mellitus. Arch. Phys. Med. Rehabil. 2013, 94, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Stijntjes, M.; Aartsen, M.J.; Taekema, D.G.; Gussekloo, J.; Huisman, M.; Meskers, C.G.M.; de Craen, A.J.M.; Maier, A.B. Temporal Relationship Between Cognitive and Physical Performance in Middle-Aged to Oldest Old People. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 662–668. [Google Scholar] [CrossRef]
- Clouston, S.A.; Brewster, P.; Kuh, D.; Richards, M.; Cooper, R.; Hardy, R.; Rubin, M.S.; Hofer, S.M. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol. Rev. 2013, 35, 33–50. [Google Scholar] [CrossRef]
- Gale, C.R.; Allerhand, M.; Sayer, A.A.; Cooper, C.; Deary, I.J. The dynamic relationship between cognitive function and walking speed: The English Longitudinal Study of Ageing. Age 2014, 36, 9682. [Google Scholar] [CrossRef]
- Jabourian, A.; Lancrenon, S.; Delva, C.; Perreve-Genet, A.; Lablanchy, J.P.; Jabourian, M. Gait velocity is an indicator of cognitive performance in healthy middle-aged adults. PLoS ONE 2014, 9, e103211. [Google Scholar] [CrossRef]
- MacAulay, R.K.; Brouillette, R.M.; Foil, H.C.; Bruce-Keller, A.J.; Keller, J.N. A longitudinal study on dual-tasking effects on gait: Cognitive change predicts gait variance in the elderly. PLoS ONE 2014, 9, e99436. [Google Scholar] [CrossRef]
- McDonough, A.L.; Batavia, M.; Chen, F.C.; Kwon, S.; Ziai, J. The validity and reliability of the GAITRite system’s measurements: A preliminary evaluation. Arch. Phys. Med. Rehabil. 2001, 82, 419–425. [Google Scholar] [CrossRef]
- O’Donovan, K.J.; Greene, B.R.; McGrath, D.; O’Neill, R.; Burns, A.; Caulfield, B. SHIMMER: A new tool for temporal gait analysis. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3826–3829. [Google Scholar] [CrossRef]
Characteristic | HC (n = 37) | T2DM (n = 65) | Statistic |
---|---|---|---|
Age, years (SD) | 57.0 (8.3) | 57.5 (8.0) | t = −0.31, 0.62 |
Sex, female (n, %) | 23 (62.1%) | 26 (40.0%) | χ2 = 4.64, p = 0.03 |
Body Mass Index, kg/m2 (SD) | 28.4 (3.5) | 31.6 (6.8) | t = −2.74, p = 0.003 |
Education | |||
Primary (n, %) | 2 (5.4%) | 8 (12.3%) | |
Secondary (n, %) | 24 (64.9%) | 46 (70.8%) | |
Tertiary (n, %) | 11 (29.7%) | 11 (16.9%) | χ2 = 3.06, p = 0.22 |
Depressive Symptoms, CESD-D (IQR) | 4 (1–6) | 6 (3.5–7) | z = −1.71, p = 0.09 |
Polypharmacy, >5 medications (n, %) | 2 (5.4%) | 36 (55.4%) | χ2 = 25.2, p < 0.001 |
Blood Pressure | |||
Systolic, mmHg (SD) | 136.7 (14.0) | 135.2 (14.2%) | t = 0.53, p = 0.70 |
Diastolic, mmHg (SD) | 81.2 (8.6) | 80.0 (9.0%) | t = 0.70, p = 0.24 |
Lipid Levels | |||
Low-Density Lipoprotein (SD) | 2.9 (1.2) | 2.2 (1.0) | t = 2.91, p = 0.002 |
Total Cholesterol (SD) | 5.0 (1.4) | 4.2 (1.0) | t = 3.42, p < 0.001 |
Triglycerides (SD) | 1.8 (1.7) | 2.0 (1.0) | t = −0.70, p = 0.76 |
Smoking Status | |||
Never (n, %) | 16 (43.2%) | 27 (41.5%) | |
Former (n, %) | 17 (46.0%) | 24 (37.0%) | |
Current (n, %) | 4 (10.8%) | 14 (21.5%) | χ2 = 2.03, p = 0.36 |
Alcohol Use | |||
Never (n, %) | 11 (29.7%) | 11 (16.9%) | |
0–7 Units/Week (n, %) | 11 (29.7%) | 33 (50.8%) | |
8–14 Units/Week (n, %) | 10 (27.0%) | 13 (20.0%) | |
15–21 Units/Week (n, %) | 4 (10.8%) | 4 (6.2%) | |
>21 Units/Week (n, %) | 1 (2.7%) | 4 (6.2%) | χ2 = 5.95, p = 0.20 |
Physical Activity | |||
Never (n, %) | 6 (16.2%) | 15 (23.1%) | |
Less than Monthly (n, %) | 3 (8.1%) | 8 (12.3%) | |
1–3 Times per Month (n, %) | 1 (2.7%) | 8 (12.3%) | |
Once per Week (n, %) | 5 (13.5%) | 4 (6.2%) | |
2–4 Days Per Week (n, %) | 10 (27.0%) | 18 (27.7%) | |
5–7 Days Per Week (n, %) | 12 (32.4%) | 12 (18.5%) | χ2 = 6.80, p = 0.24 |
Charlson Comorbidity Index (IQR) | 0 (0–0) | 1 (1–1) | z = −7.81, p < 0.001 |
T2DM Characteristics | |||
Duration of T2DM, years (IQR) | - | 11 (7–15) | - |
HbA1c (mmol/mmol) | 38.1 (2.9) | 60.6 (2.2) | t = −7.7, p < 0.001 |
Medications | |||
Number of T2DM Medications | - | 2 (1–3) | - |
Metformin (n, %) | - | 52 (85.3%) | - |
Sulfonylurea (n, %) | - | 14 (23.0%) | - |
GLP-1 Analogue (n, %) | - | 23 (37.7%) | - |
DPP-4 Inhibitor (n, %) | - | 13 (21.3%) | - |
SGLT2 Inhibitor (n, %) | - | 23 (37.7%) | - |
Insulin (n, %) | - | 12 (19.7%) | - |
Cognitive Performance | |||
Paired Associates Learning, First Attempt (IQR) | 10 (8–14) | 11 (7–14) | z = 0.28, p = 0.78 |
Spatial Working Memory Score (IQR) | 9 (6–11) | 9 (7–10) | z = 0.66, p = 0.51 |
Delayed Pattern Recognition, % Correct (IQR) | 83.3% (72.2–94.4%) | 83.3% (72.2–88.9%) | z = 1.55, p = 0.12 |
Reaction Time Task, ms (IQR) | 390 (359–410) | 406 (375–456) | z = −2.01, p = 0.04 |
Stockings of Cambridge, % Correct (IQR) | 10 (8–11) | 10 (8–12) | z = 0.48, p = 0.64 |
Rapid Visual Processing, A Prime (IQR) | 0.90 (0.87–0.94) | 0.88 (0.84–0.92) | z = 2.05, p = 0.04 |
Paired Associates Learning | Spatial Working Memory | Delayed Pattern Recognition | ||||
---|---|---|---|---|---|---|
Model 1 β (95% CI) | Model 2 β (95% CI) | Model 1 β (95% CI) | Model 2 β (95% CI) | Model 1 β (95% CI) | Model 2 β (95% CI) | |
Usual Pace Walk | ||||||
PC1 | −0.01 | −0.02 | −0.07 | −0.07 | 0.04 | 0.03 |
(−0.08, 0.06) | (−0.10, 0.05) | (−0.14, −0.00) * | (−0.14, 0.01) | (−0.03, 0.11) | (−0.05, 0.10) | |
PC2 | 0.08 | 0.09 | −0.05 | −0.07 | 0.09 | 0.10 |
(−0.02, 0.17) | (−0.02, 0.21) | (−0.14, 0.04) | (−0.19, 0.05) | (−0.00, 0.18) | (−0.02, 0.22) | |
PC3 | 0.05 | 0.05 | 0.06 | 0.03 | 0.00 | 0.01 |
(−0.06, 0.15) | (−0.06, 0.16) | (−0.05, 0.16) | (−0.08, 0.15) | (−0.11, 0.11) | (−0.10, 0.12) | |
Maximal Pace Walk | ||||||
PC1 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | |
(−0.07, 0.08) | (−0.06, 0.09) | (−0.07, 0.08) | (−0.07, 0.09) | (−0.05, 0.10) | (−0.04, 0.11) | |
PC2 | 0.14 | 0.13 | −0.03 | −0.11 | 0.16 | 0.17 |
(0.05, 0.23) ** | (0.02, 0.25) * | (−0.20, −0.01) * | (−0.23, 0.01) | (0.07, 0.24) ** | (0.06, 0.29) ** | |
PC3 | -−0.04 | −0.03 | 0.00 | 0.01 | 0.06 | 0.09 |
(−0.14, 0.06) | (−0.14, 0.07) | (−0.10, 0.10) | (−0.10, 0.11) | (−0.03, 0.16) | (−0.01, 0.20) | |
Cognitive Dual-Task | ||||||
PC1 | −0.02 | −0.03 | −0.01 | 0.01 | −0.06 | −0.06 |
(−0.08, 0.05) | (−0.09, 0.03) | (−0.07, 0.06) | (−0.06, 0.07) | (−0.12, 0.01) * | (−0.13, −0.00) * | |
PC2 | 0.11 | 0.10 | −0.06 | −0.05 | 0.09 | 0.08 |
(0.02, 0.20) * | (0.01, 0.20) * | (−0.15, 0.04) | (−0.15, 0.04) | (−0.00, 0.18) | (−0.02, 0.17) | |
PC3 | 0.04 | 0.03 | −0.08 | −0.07 | 0.08 | 0.08 |
(−0.07, 0.14) | (−0.07, 0.14) | (−0.18, 0.03) | (−0.18, 0.03) | (−0.03, 0.18) | (−0.03, 0.18) | |
Cognitive Dual-Task Cost | ||||||
PC1 | −0.02 | −0.03 | 0.01 | 0.02 | −0.06 | −0.07 |
(−0.09, 0.05) | (−0.10, 0.04) | (−0.05, 0.08) | (−0.04, 0.09) | (−0.13, 0.01) | (−0.14, 0.00) | |
PC2 | 0.10 | 0.08 | −0.02 | −0.00 | 0.03 | 0.01 |
(−0.02, 0.22) | (−0.03, 0.19) | (−0.12, 0.08) | (−0.11, 0.10) | (−0.09, 0.15) | (−0.11, 0.13) | |
PC3 | 0.02 | 0.04 | −0.09 | −0.10 | 0.05 | 0.07 |
(−0.10, 0.14) | (−0.08, 0.15) | (−0.19, 0.01) | (−0.20, −0.01) * | (−0.07, 0.18) | (−0.05, 0.19) | |
Reaction Time Task | Rapid Visual Processing | Stockings of Cambridge | ||||
Model 1 β (95% CI) | Model 2 β (95% CI) | Model 1 β (95% CI) | Model 2 β (95% CI) | Model 1 β (95% CI) | Model 2 β (95% CI) | |
Usual Pace Walk | ||||||
PC1 | 0.02 | 0.01 | 0.02 | 0.00 | 0.04 | 0.04 |
(−0.05, 0.10) | (−0.07, 0.08) | (−0.06, 0.09) | (−0.07, 0.07) | (−0.03, 0.11) | (−0.04, 0.10) | |
PC2 | −0.06 | −0.09 | 0.05 | 0.10 | 0.04 | 0.10 |
(−0.15, 0.03) | (−0.21, 0.02) | (−0.04, 0.14) | (−0.00, 0.22) | (−0.04, 0.13) | (−0.01, 0.22) | |
PC3 | −0.09 | −0.04 | 0.04 | 0.02 | 0.05 | 0.07 |
(−0.20, 0.01) | (−0.15, 0.07) | (−0.06, 0.15) | (−0.08, 0.13) | (−0.06, 0.16) | (−0.05, 0.18) | |
Maximal Pace Walk | ||||||
PC1 | 0.07 | 0.06 | −0.01 | 0.01 | 0.00 | 0.00 |
(−0.01, 0.14) | (−0.02, 0.13) | (−0.08, 0.07) | (−0.06, 0.08) | (−0.07, 0.08) | (−0.07, 0.07) | |
PC2 | −0.07 | −0.11 | 0.12 | 0.10 | 0.12 | 0.16 |
(−0.16, 0.02) | (−0.22, 0.10) | (0.03, 0.21) * | (−0.01, 0.22) | (0.03, 0.21) * | (0.05, 0.28) ** | |
PC3 | 0.11 | 0.05 | −0.05 | −0.01 | −0.00 | 0.03 |
(0.11, 0.20) * | (−0.05, 0.16) | (−0.15, 0.05) | (−0.10, 0.09) | (−0.10, 0.09) | (−0.07, 0.14) | |
Cognitive Dual-Task | ||||||
PC1 | 0.02 | −0.06 | −0.06 | −0.04 | −0.05 | |
(−0.04, 0.09) | (−0.04, 0.09) | (−0.12, 0.01) | (−0.12, −0.00) * | (−0.10, 0.02) | (−0.11, 0.01) | |
PC2 | −0.09 | −0.10 | 0.05 | 0.05 | 0.07 | 0.08 |
(−0.18, 0.00) | (−0.19, −0.01) * | (−0.04, 0.15) | (−0.04, 0.15) | (−0.03, 0.16) | (−0.02, 0.17) | |
PC3 | −0.02 | −0.05 | 0.08 | 0.09 | 0.09 | 0.10 |
(−0.13, 0.08) | (−0.15, 0.05) | (−0.03, 0.18) | (−0.01, 0.19) | (−0.02, 0.19) | (−0.00, 0.20) | |
Cognitive Dual-Task Cost | ||||||
PC1 | 0.01 | 0.02 | −0.05 | −0.06 | −0.05 | −0.04 |
(−0.07, 0.09) | (−0.06, 0.10) | (0.13, 0.02) | (−0.13, 0.01) | (−0.11, 0.02) | (−0.06, −0.01) | |
PC2 | −0.06 | −0.06 | 0.01 | −0.01 | 0.02 | 0.00 |
(−0.19, 0.07) | (−0.18, 0.06) | (−0.11, 0.13) | (−0.12, 0.10) | (−0.09, 0.14) | (−0.11, 0.11) | |
PC3 | −0.03 | −0.06 | 0.06 | 0.09 | 0.07 | 0.10 |
(−0.16, 0.10) | (−0.18, 0.07) | (−0.06, 0.19) | (−0.02, 0.20) | (−0.04, 0.18) | (−0.01, 0.20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, L.; Dyer, A.H.; Dolphin, H.; Killane, I.; Bourke, N.M.; Widdowson, M.; Woods, C.P.; Gibney, J.; Reilly, R.B.; Kennelly, S.P. Discrete Relationships between Spatiotemporal Gait Characteristics and Domain-Specific Neuropsychological Performance in Midlife. Sensors 2024, 24, 3903. https://doi.org/10.3390/s24123903
Morrison L, Dyer AH, Dolphin H, Killane I, Bourke NM, Widdowson M, Woods CP, Gibney J, Reilly RB, Kennelly SP. Discrete Relationships between Spatiotemporal Gait Characteristics and Domain-Specific Neuropsychological Performance in Midlife. Sensors. 2024; 24(12):3903. https://doi.org/10.3390/s24123903
Chicago/Turabian StyleMorrison, Laura, Adam H. Dyer, Helena Dolphin, Isabelle Killane, Nollaig M. Bourke, Matthew Widdowson, Conor P. Woods, James Gibney, Richard B. Reilly, and Sean P. Kennelly. 2024. "Discrete Relationships between Spatiotemporal Gait Characteristics and Domain-Specific Neuropsychological Performance in Midlife" Sensors 24, no. 12: 3903. https://doi.org/10.3390/s24123903
APA StyleMorrison, L., Dyer, A. H., Dolphin, H., Killane, I., Bourke, N. M., Widdowson, M., Woods, C. P., Gibney, J., Reilly, R. B., & Kennelly, S. P. (2024). Discrete Relationships between Spatiotemporal Gait Characteristics and Domain-Specific Neuropsychological Performance in Midlife. Sensors, 24(12), 3903. https://doi.org/10.3390/s24123903