Direction-Finding Study of a 1.7 mm Diameter Towed Hydrophone Array Based on UWFBG
Abstract
:1. Introduction
2. Principle and Simulation
2.1. Distributed Acoustic Sensing System
2.2. UWFBG Theory of Direction Detection for Hydrophones
3. Experimental Setup and Results
3.1. UWFBG Hydrophone Array Design, Fabrication
3.2. Experimental Setup
3.3. Sensitivity Analysis
3.4. Azimuth Detection Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirkendall, C.K.; Dandridge, A. Overview of high performance fibre-optic sensing. J. Phys. D Appl. Phys. 2004, 37, R197–R216. [Google Scholar] [CrossRef]
- Dandridge, A.; Cogdell, G.B. Fiber optic sensors for Navy applications. IEEE LCS 1991, 2, 81–89. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, W.; Wang, J.; Hu, X.; Chen, M.; Zhang, Y. Recent Progress in Fiber optic Hydrophones. Photonic Sens. 2021, 11, 109–122. [Google Scholar] [CrossRef]
- Cranch, G.A.; Crickmore, R.; Kirkendall, C.K.; Bautista, A.; Daley, K.; Motley, S.; Salzano, J.; Latchem, J.; Nash, P.J. Acoustic performance of a large-aperture, seabed, fiber optic hydrophone array. J. Acoust. Soc. Am. 2004, 115, 2848–2858. [Google Scholar] [CrossRef]
- Gong, Z.; Tran, D.; Ratilal, P. Comparing passive source localization and tracking approaches with a towed horizontal receiver array in an ocean waveguide. J. Acoust. Soc. Am. 2012, 134, 3705–3720. [Google Scholar] [CrossRef]
- Bucaro, J.A.; Dardy, H.D.; Carome, E.F. Optical fiber acoustic sensor. Appl. Opt. 1977, 16, 1761–1762. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Z.; Luo, H.; Ma, L.; Xiong, S.; Liao, Y.; Zhang, M. Recent progress toward fiber optic hydrophone research, application and commercialization in China. Proc. SPIE 2012, 8421, 84210Q. [Google Scholar]
- Liang, H.; Kang, F.; Hui, C.; Fu, Y. Two-layer virtual leader-following: An adaptive cooperative path following control for crowded UUV swarm subjected to constraints. Ocean. Eng. 2022, 257, 111494. [Google Scholar] [CrossRef]
- Guvenc, I. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles. Sensors 2022, 22, 3896. [Google Scholar] [CrossRef]
- Wang, K.; Tian, T. UUV mission payloads design and implementation for underwater sound radiation and estimation. Ship Sci. Technol. 2017, 39, 122–124. [Google Scholar]
- Goswami, S.; Uniyal, P.; Rawat, B.S. DFB—FL HYDROPHONE: A brief review. J. Emerg. Technol. Innov. Res. 2019, 6, 598–604. [Google Scholar]
- Yun, Z.; Luo, H.; Hu, Z.; Hu, Y. Fiber optic hydrophone used for thin line towed array. Acta Opt. Sin. 2012, 32, 1206004. [Google Scholar]
- Niu, S.; Hu, Y.; Hu, Z.; Luo, H. Fiber Fabry-Perot hydrophone based on push-pull structure and differential detection. IEEE Photonics Technol. Lett. 2011, 23, 1499–1501. [Google Scholar] [CrossRef]
- Zhu, M.; Gu, H.; Song, W. Theoretical and experimental research on flexible fiber grating hydrophone array. Chin. Opt. 2023, 16, 366–372. [Google Scholar]
- Rajesh, R. An eight element hydrophone array using DFB fiber laser with bender bar packaging. In Proceedings of the 13th International Conference on Fiber Optics and Photonics, Kharagpur, India, 4–8 December 2016; Th3A.52. [Google Scholar]
- Tang, B.; Huang, J.; Gu, H.; Mao, X. Experimental Research on DFB Fiber Laser Hydrophonr Towed Line Array. Acta Photonica Sinca 2017, 46, 0406004. (In Chinese) [Google Scholar] [CrossRef]
- Plotnikov, M.Y.; Lavrov, V.S.; Dmitraschenko, P.Y.; Kulikov, A.V.; Meshkovskiy, I.K. Thin cable fiber optic hydrophone array for passive acoustic surveillance applications. IEEE Sens. J. 2019, 19, 3376. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Zhao, C. Sea trial of 16-element DFB-FL hydrophone towed array. Proc. SPIE 2020, 11340, 1134016. [Google Scholar]
- Guo, Z.; Gao, K.; Yang, H.; Dai, Z.; Wu, B.; Zhang, J. 20mm Diameter Interferometric Hydrophone Towed Array Based on Fiber Bragg Gratings. Acta Opt. Sinca 2019, 39, 1106003. (In Chinese) [Google Scholar]
- Bruno, F.A.; Janneh, M.; Gunda, A.; Kyselica, R.; Stajanca, P.; Werzinger, S.; Gruca, G.; Rijnveld, N.; Persiano, G.V.; Cutolo, A.; et al. Fiber optic hydrophones for towed array applications. Opt. Lasers Eng. 2023, 160, 107269. [Google Scholar] [CrossRef]
- Li, Y.; Karrenbach, M.; Ajo-Franklin, J. Distributed Acoustic Sensing in Geophysics: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Naldrett, G.; Parker, T.; Shatalin, S.; Mondanos, M.; Farhadiroushan, M. High-resolution Carina distributed acoustic fibreoptic sensor for permanent reservoir monitoring and extending the reach into subsea fields. First Break 2020, 38, 71–76. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Xiao, X.; Fan, C.; Wen, P.; Yan, Z.; Sun, Q. Fully continuous fiber optic hydrophone streamer with small channel spacing for marine seismic acquisition. In Proceedings of the Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022; Optica Publishing Group: Washington, DC, USA. [Google Scholar]
- Yan, B.; Li, H.; Zhang, K.; Xiao, X.; He, T.; Fan, C.; Yan, Z.; Sun, Q. Quantitative identification and localization for pipeline microleakage by fiber distributed acoustic sensor. J. Light. Technol. 2023, 41, 5460–5467. [Google Scholar] [CrossRef]
- Li, T.; Fan, C.; Li, H.; He, T.; Qiao, W.; Shi, Z.; Yan, Z.; Liu, C.; Liu, D.; Sun, Q. Nonintrusive distributed flow rate sensing system based on flow-induced vibrations detection. IEEE Trans. Instrum. Meas. 2020, 70, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.; He, T.; Li, H.; Fan, C.; Yan, Z.; Sun, Q. Modified data augmentation integration method for robust intrusion events recognition with fiber optic das system. J. Light. Technol. 2023, 42, 453–462. [Google Scholar] [CrossRef]
- Muanenda, Y.; Faralli, S.; Oton, C.J.; Cheng, C.; Yang, M.; Di Pasquale, F. Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection. Opt. Express 2019, 27, 10644–10658. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, Y.; Li, Y.; Bai, Q.; Liu, X.; Jin, B. Polarization fading suppression for optical fiber sensing: A review. IEEE Sens. J. 2022, 22, 8295–8312. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Fan, C.; He, T.; Yan, B.; Chen, J.; Xiao, X.; Yan, Z. Research Progress of Distributed Acoustic Sensing Based on Scattering Enhanced Optical Fiber. Acta Opt. Sin. 2022, 59, 2100001. [Google Scholar]
- Ai, F. Investigation on Discrete Enhanced Fiber Based Distributed Sensing Technologies and Their Applications; Huazhong University of Science & Technology of China: Wuhan, China, 2019; pp. 47–60. [Google Scholar]
- Lu, B.; Wu, B.; Gu, J.; Yang, J.; Gao, K.; Wang, Z.; Ye, L.; Ye, Q.; Qu, R.; Chen, X.; et al. Distributed optical fiber hydrophone based on Φ-OTDR and its field test. Opt. Express 2021, 29, 3147–3161. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, H.; Xiao, X.; Fan, C.; Yan, B.; Zhang, S.; Liu, H.; Ai, K.; Yan, Z.; Sun, Q. Fully distributed hydroacoustic sensing based on ultra-highly sensitive and lightweight fiber-optic hydrophone cable. Opt. Lasers Eng. 2023, 169, 107734. [Google Scholar] [CrossRef]
- Guo, H.; Tang, J.; Li, X.; Zheng, Y.; Yu, H.; Yu, H. On-line writing identical and weak fiber Bragg grating arrays. Chin. Opt. Lett. 2013, 11, 030602. [Google Scholar]
- Waagaard, O.H.; Rønnekleiv, E.; Forbord, S.; Thingbø, D. Reduction of crosstalk in inline sensor array using inverse scattering. Proc. SPIE 2008, 7004, 7004z. [Google Scholar]
- Tang, J.; Liu, Y.; Li, C.; Guo, H.; Yang, M. Distributed Vibration Sensig System with High Signal-to-Noise Ratio Based on Ultra-Weak Fiber Bragg Grating. Acta Opt. Sin. 2021, 41, 1306014. [Google Scholar]
- Wang, J.; Li, Z.; Fu, X.; Gui, X.; Zhan, J.; Wang, H.; Jiang, D. High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth. Opt. Express 2020, 28, 16045–16056. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Gu, H.; Pang, Y.; Liu, W.; Wang, J.; Huang, J. Ultrathin interferometric hydrophone towed line array based on UWFBG. AIP Adv. 2023, 13, 115015. [Google Scholar] [CrossRef]
Hydrophone | eφ (rad) | eh (V) | Sensitivity (dB) |
---|---|---|---|
S1 | 2.573 | 0.513 | −140.9 |
S2 | 3.989 | 0.513 | −137.2 |
S3 | 2.73 | 0.513 | −140.5 |
S4 | 3.758 | 0.513 | −137.7 |
S5 | 1.658 | 0.513 | −144.8 |
S6 | 1.984 | 0.513 | −143.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Huang, J.; Pang, Y.; Wang, J.; Gu, H. Direction-Finding Study of a 1.7 mm Diameter Towed Hydrophone Array Based on UWFBG. Sensors 2024, 24, 4300. https://doi.org/10.3390/s24134300
Wu S, Huang J, Pang Y, Wang J, Gu H. Direction-Finding Study of a 1.7 mm Diameter Towed Hydrophone Array Based on UWFBG. Sensors. 2024; 24(13):4300. https://doi.org/10.3390/s24134300
Chicago/Turabian StyleWu, Su, Junbin Huang, Yandong Pang, Jiabei Wang, and Hongcan Gu. 2024. "Direction-Finding Study of a 1.7 mm Diameter Towed Hydrophone Array Based on UWFBG" Sensors 24, no. 13: 4300. https://doi.org/10.3390/s24134300
APA StyleWu, S., Huang, J., Pang, Y., Wang, J., & Gu, H. (2024). Direction-Finding Study of a 1.7 mm Diameter Towed Hydrophone Array Based on UWFBG. Sensors, 24(13), 4300. https://doi.org/10.3390/s24134300