Implementation of Sound Direction Detection and Mixed Source Separation in Embedded Systems
Abstract
:1. Introduction
2. Embedded System Design for Direction Detection
2.1. Algorithm Flow and Overview
2.1.1. Voice Activity Detection (VAD)
2.1.2. Sound Enhancement—Spectral Subtraction
2.1.3. Direction Detection—TDE-to-DOA Method
2.2. Embedded System Hardware Devices
3. Design of Embedded System for Separation of Mixed Audio Sources
3.1. Algorithm Flow and Introduction
Hybrid Audio Source Separation
3.2. Embedded System Hardware Devices
Cirrus Logic Audio Card Audio Module
4. Experimental Results
4.1. Direction Detection of the Embedded System
4.1.1. Experimental Environment Setup
4.1.2. Experimental Environment Equipment
4.1.3. Experimental Results
4.2. Embedded System for Mixed Sound Source Separation
4.2.1. Experimental Environment Setup
4.2.2. Experimental Environment Equipment
4.2.3. Experimental Results
5. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.-C.; Lee, Y.-S.; Lin, C.-H.; Siahaan, E.; Yang, C.-H. Robust environmental sound recognition with fast noise suppression for home automation. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1235–1242. [Google Scholar] [CrossRef]
- Wang, J.-C.; Lee, H.-P.; Wang, J.-F.; Lin, C.-B. Robust environmental sound recognition for home automation. IEEE Trans. Autom. Sci. Eng. 2008, 5, 25–31. [Google Scholar] [CrossRef]
- Lu, J.; Peng, Z.; Yang, S.; Ma, Y.; Wang, R.; Pang, Z.; Feng, X.; Chen, Y.; Cao, Y. A review of sensory interactions between autonomous vehicles and drivers. J. Syst. Archit. 2023, 141, 102932. [Google Scholar] [CrossRef]
- Abdulhameed, Z.N. Design and Implement a Wireless Temperature Monitoring System using Noncontact IR Sensor Based on Arduino. In Proceedings of the 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 8–9 December 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Wang, J.-C.; Chin, Y.-H.; Hsieh, W.-C.; Lin, C.-H.; Chen, Y.-R.; Siahaan, E. Speaker identification with whispered speech for the access control system. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1191–1199. [Google Scholar] [CrossRef]
- Karunaratna, S.; Maduranga, P. Artificial Intelligence on Single Board Computers: An Experiment on Sound Event Classification. In Proceedings of the 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI), Colombo, Sri Lanka, 6–7 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Ahmad, M.; Amin, M.B.; Hussain, S.; Kang, B.H.; Cheong, T.; Lee, S. Health fog: A novel framework for health and wellness applications. J. Supercomput. 2016, 72, 3677–3695. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Xiong, T.; Richardson, A.G.; Lucas, T.H.; Chin, P.S.; Etienne-Cummings, R.; Tran, T.D.; Van der Spiegel, J. A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface. IEEE Trans. Biomed. Circ. Syst. 2016, 10, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, Y.; Lu, F. Embedded remote monitoring system based on NBIOT. J. Phys. Conf. Ser. 2022, 2384, 012038. [Google Scholar] [CrossRef]
- Liu, W.; Xu, W.; Mu, X.; Cheng, J. Design of Smart Home Control System Based on Embedded System. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Shanghai, China, 6–8 November 2020; IEEE: New York, NY, USA, 2020; pp. 2209–2213. [Google Scholar]
- Sehatbakhsh, N.; Alam, M.; Nazari, A.; Zajic, A.; Prvulovic, M. Syndrome: Spectral Analysis for Anomaly Detection on Medical IOT and Embedded Devices. In Proceedings of the 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington, DC, USA, 30 April–4 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Zhou, W.; Liao, J.; Li, B.; Li, J. A Family Medical Monitoring System Based on Embedded uC/OS-II and GPRS. In Proceedings of the 2012 IEEE International Conference on Information and Automation, Shenyang, China, 6–8 June 2012; IEEE: New York, NY, USA, 2012; pp. 663–667. [Google Scholar]
- Ilmi, M.; Huda, M.; Rahardhita, W. Automatic Control Music Amplifier Using Speech Signal Utilizing by TMS320C6713. In Proceedings of the 2015 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2015; IEEE: New York, NY, USA, 2015; pp. 163–166. [Google Scholar]
- Manikandan, J.; Venkataramani, B.; Girish, K.; Karthic, H.; Siddharth, V. Hardware Implementation of Real-Time Speech Recognition System Using TMS320C6713 DSP. In Proceedings of the 2011 24th International Conference on VLSI Design, Chennai, India, 2–7 January 2011; IEEE: New York, NY, USA, 2011; pp. 250–255. [Google Scholar]
- Mustafa, N.B.A.; Gandi, S.; Sharrif, Z.A.M.; Ahmed, S.K. Real-Time Implementation of a Fuzzy Inference System for Banana Grading Using DSP TMS320C6713 Platform. In Proceedings of the 2010 IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur, Malaysia, 13–14 December 2010; IEEE: New York, NY, USA, 2010; pp. 324–328. [Google Scholar]
- Singh, J.; Singh, H.P.; Singh, S. Implementation of FIR Interpolation Filter on TMS320C6713 for VOIP Analysis. In Proceedings of the 2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks, Liverpool, UK, 28–30 July 2010; IEEE: New York, NY, USA, 2010; pp. 289–294. [Google Scholar]
- Texas Instruments. SPRS186L-TMS320C6713 Floating-Point Digital Signal Processing; December 2001. Revised November 2005; Texas Instruments, Texas, USA. 2005. Available online: https://media.digikey.com/pdf/Data%20Sheets/Texas%20Instruments%20PDFs/TMS320C6713.pdf (accessed on 20 June 2024).
- Spectrum Digital. TMS320C6713 DSK Technical Reference; November 2003. Spectrum Digital, Texas, USA. 2003. Available online: https://electrical.engineering.unt.edu/sites/default/files/Spectrum_Digital_TMS320C6713_User_Guide.pdf (accessed on 20 June 2024).
- Texas Instruments. Code Composer Studio Development Tools v3. 3 Getting Started Guide; SPRU509H; May 2008. Texas Instruments, Texas, USA. 2008. Available online: https://spinlab.wpi.edu/courses/ece4703_2010/spru509h.pdf (accessed on 20 June 2024).
- Texas Instruments. Code Composer Studio User’s Guide; Texas Instruments Literature Number SPRU328B. Texas Instruments, Texas, USA. 2000. Available online: https://software-dl.ti.com/ccs/esd/documents/users_guide/index.html (accessed on 20 June 2024).
- Gupta, M.S.D.; Patchava, V.; Menezes, V. Healthcare Based on IOT Using Raspberry Pi. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 8–10 October 2015; IEEE: New York, NY, USA, 2015; pp. 796–799. [Google Scholar]
- Hossain, N.; Kabir, M.T.; Rahman, T.R.; Hossen, M.S.; Salauddin, F. A Real-Time Surveillance Mini-Rover Based on OpenCV-Python-JAVA Using Raspberry Pi 2. In Proceedings of the 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 27–29 November 2015; IEEE: New York, NY, USA, 2015; pp. 476–481. [Google Scholar]
- Sandeep, V.; Gopal, K.L.; Naveen, S.; Amudhan, A.; Kumar, L.S. Globally Accessible Machine Automation Using Raspberry Pi based on Internet of Things. In Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015; IEEE: New York, NY, USA, 2015; pp. 1144–1147. [Google Scholar]
- Paul, S.; Antony, A.; Aswathy, B. Android based home automation using raspberry pi. Int. J. Comput. Technol. 2014, 1, 143–147. [Google Scholar]
- Upton, E.; Halfacree, G. Raspberry Pi User Guide; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Kwon, B.; Kim, G.; Park, Y. Sound Source Localization Methods with Considering of Microphone Placement in Robot Platform. In Proceedings of the RO-MAN 2007-The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, Republic of Korea, 26–29 August 2007; IEEE: New York, NY, USA, 2007; pp. 127–130. [Google Scholar]
- Lv, X.; Zhang, M. Sound Source Localization Based on Robot Hearing and Vision. In Proceedings of the 2008 International Conference on Computer Science and Information Technology, Singapore, 29 August–2 September 2008; IEEE: New York, NY, USA, 2008; pp. 942–946. [Google Scholar]
- Carter, G.C.; Nuttall, A.H.; Cable, P.G. The smoothed coherence transform. Proc. IEEE 1973, 61, 1497–1498. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.; Everson, R. Independent Component Analysis: Principles and Practice; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Wang, J.-C.; Wang, C.-Y.; Tai, T.-C.; Shih, M.; Huang, S.-C.; Chen, Y.-C.; Lin, Y.-Y.; Lian, L.-X. VLSI design for convolutive blind source separation. IEEE Trans. Circ. Syst. II Express Briefs 2015, 63, 196–200. [Google Scholar] [CrossRef]
- Belouchrani, A.; Amin, M.G. Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Process. 1998, 46, 2888–2897. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Kellermann, W.; Sawada, H.; Makino, S. MAP-based underdetermined blind source separation of convolutive mixtures by hierarchical clustering and-norm minimization. EURASIP J. Adv. Signal Process. 2006, 2007, 24717. [Google Scholar] [CrossRef]
- Bofill, P. Underdetermined blind separation of delayed sound sources in the frequency domain. Neurocomputing 2003, 55, 627–641. [Google Scholar] [CrossRef]
- Ying-Chuan, C. VLSI Architecture Design for Blind Source Separation Based on Infomax and Time-Frequency Masking. Master’s Thesis, National Central University, Taoyuan, Taiwan, 2012. [Google Scholar]
- Kinnunen, T.; Rajan, P. A Practical, Self-Adaptive Voice Activity Detector for Speaker Verification with Noisy Telephone and Microphone Data. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: New York, NY, USA, 2013; pp. 7229–7233. [Google Scholar]
- Boll, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 1979, 27, 113–120. [Google Scholar] [CrossRef]
- Kim, W.; Kang, S.; Ko, H. Spectral subtraction based on phonetic dependency and masking effects. IEE Proc.-Vis. Image Signal Process. 2000, 147, 423–427. [Google Scholar] [CrossRef]
- Wang, J.-C.; Lee, Y.-S.; Lin, C.-H.; Wang, S.-F.; Shih, C.-H.; Wu, C.-H. Compressive sensing-based speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 2122–2131. [Google Scholar] [CrossRef]
- Tan, H.M.; Liang, K.-W.; Wang, J.-C. Discriminative Vector Learning with Application to Single Channel Speech Separation. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Tan, H.M.; Vu, D.-Q.; Wang, J.-C. Selinet: A Lightweight Model for Single Channel Speech Separation. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Varma, K.; Ikuma, T.; Beex, A.A. Robust TDE-Based DOA Estimation for Compact Audio Arrays. In Proceedings of the Sensor Array and Multichannel Signal Processing Workshop Proceedings, Rosslyn, VA, USA, 6 August 2002; IEEE: New York, NY, USA, 2002; pp. 214–218. [Google Scholar]
- Cirrus Logic. Cirrus Logic Audio Card User Documentation; Cirrus Logic: Austin, TX, USA, 2015. [Google Scholar]
- Cirrus Logic. Cirrus Logic Audio Card for B+ and A+ Onwards Schematics; Cirrus Logic: Austin, TX, USA, 2014. [Google Scholar]
Parameters | Value |
---|---|
angle | 5°, 15°, 25°, 35°, 45°, 55°, 65°, 75°, 85°, 95°, 105°, 115°, 125°, 135°, 145°, 155°, 165°, 175° |
microphone distance | 0.22 m |
distance between source and microphone center | 2 m |
sampling frequency | 16 kHz |
Parameters | Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
actual angle | 5° | 15° | 25° | 35° | 45° | 55° | 65° | 75° | 85° |
measured angle | 8.53° | 8.53° | 19.13° | 28.54° | 41.77° | 52.17° | 64.12° | 75.60° | 89.68° |
actual angle | 95° | 105° | 115° | 125° | 135° | 145° | 155° | 165° | 175° |
measured angle | 100.50° | 107.69° | 118.72° | 131.11° | 141.17° | 152.81° | 165.21° | 168.54° | 180.00° |
Parameters | Value |
---|---|
angle | 30°, 60°, 90° |
microphone distance | 58 mm |
distance between source and microphone center | 1 m, 2 m |
sampling frequency | 8 kHz |
Parameters | Value |
---|---|
speaker angle | 0°, 45°, 90°, 135°, 180° |
microphone distance | 58 mm |
distance between speaker and microphone center | 0.2 m |
distance between interference source and microphone center | 1 m |
sampling frequency | 8 kHz |
Parameters | Value | Average | ||||||
---|---|---|---|---|---|---|---|---|
sound source angle | , | , | , | , | , | , | , | |
SIR | 17.35 | 17.13 | 15.64 | 17.87 | 17.21 | 15.76 | 16.04 | 16.72 |
Parameters | Value | Average | |||||
---|---|---|---|---|---|---|---|
sound source angle | , | , | , | , | , | , | |
SIR | 16.68 | 16.01 | 18.76 | 14.74 | 15.61 | 15.74 | 15.76 |
Signal | Speech Recognition Accuracy |
---|---|
mixed signal | 90% |
separated signal | 83% |
mixed signal and separated signal | 95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-H.; Le, P.T.; Bee, W.-S.; Putri, W.R.; Su, M.-H.; Li, K.-C.; Chen, S.-L.; He, J.-L.; Pham, T.; Li, Y.-H.; et al. Implementation of Sound Direction Detection and Mixed Source Separation in Embedded Systems. Sensors 2024, 24, 4351. https://doi.org/10.3390/s24134351
Wang J-H, Le PT, Bee W-S, Putri WR, Su M-H, Li K-C, Chen S-L, He J-L, Pham T, Li Y-H, et al. Implementation of Sound Direction Detection and Mixed Source Separation in Embedded Systems. Sensors. 2024; 24(13):4351. https://doi.org/10.3390/s24134351
Chicago/Turabian StyleWang, Jian-Hong, Phuong Thi Le, Weng-Sheng Bee, Wenny Ramadha Putri, Ming-Hsiang Su, Kuo-Chen Li, Shih-Lun Chen, Ji-Long He, Tuan Pham, Yung-Hui Li, and et al. 2024. "Implementation of Sound Direction Detection and Mixed Source Separation in Embedded Systems" Sensors 24, no. 13: 4351. https://doi.org/10.3390/s24134351