Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization
Abstract
:1. Introduction
- Given the large sizes of graph datasets, we have proposed an efficient algorithm named IPGS for graph summarization. The algorithm models locality-sensitive hashing to locate similar nodes for compression. The proposed algorithm produces a similar compression ratio as that of a state-of-the-art algorithm but is less time-consuming.
- The proposed algorithm provides a lossless summary graph through the concept of a correction set. This is beneficial since we can always reconstruct the original one or use the correction set for querying the result with 100% accuracy.
- We performed detailed experimental evaluation on eight real-world and publicly available datasets and provided insightful results by comparing with two state-of-the-art approaches. We also present a detailed study on the Bio–Mouse–Gene dataset to demonstrate the usefulness of our approach and the concept of graph summarization in the domain of biosensors.
2. Literature Review
2.1. Review of Knowledge Discovery Techniques in Biosensors and Multidisciplinary Domains
2.2. Review of Research on Graph Summarization
3. Problem Statement
4. The Proposed Algorithm, IPGS
4.1. Correction-Set-Based Approach for Grouping-Oriented Summarization
4.2. Weighted LSH for IPGS
4.3. Formal Algorithms of the Proposed IPGS
Algorithm 1: IPGS without considering the personalization aspect. |
Algorithm 2: IPGS while considering the personalization aspect. |
5. Experimental Evaluation
5.1. Data Availability
- Bio–Mouse–Gene. Nodes—43.1 K; edges—14.5 https://networkrepository.com/bio-mouse-gene.php (accessed on 9 July 2024).
- Cnr2000. Nodes—325,557; edges—5,565,380 https://networkrepository.com/cnr-2000.php (accessed on 9 July 2024).
- LastFM-Asia. Nodes—7624; edges—27,806: https://snap.stanford.edu/data/feather-lastfm-social.html (accessed on 9 July 2024).
- Caida. Nodes—26,475; edges—53,381: https://snap.stanford.edu/data/as-Caida.html (accessed on 9 July 2024).
- DBLP. Nodes—317,080; edges 1,049,866: https://snap.stanford.edu/data/com-DBLP.html (accessed on 9 July 2024).
- Skitter. Nodes—1,694,616; edges—11,094,209: https://snap.stanford.edu/data/as-Skitter.html (accessed on 9 July 2024).
- Amazon. Nodes—403,394; edges—103,310,688: https://snap.stanford.edu/data/amazon0601.html (accessed on 9 July 2024).
- Citation-Patent. Nodes—4 M; edges—17 M: https://snap.stanford.edu/data/cit-Patents.html (accessed on 9 July 2024).
5.2. Exploring Mouse Gene Dataset through Visualization
5.3. Comparison of Execution Time
5.4. Comparison of Compression Ratio
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Data Availability Statement
Conflicts of Interest
References
- Smoot, M.; Ono, K.; Ruscheinski, J.; Wang, P.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zhou, Y.; Liao, B.; Xin, Z.; Xie, W.; Hu, C.; Luo, A. Named Entity Recognition of Diabetes Online Health Community Data Using Multiple Machine Learning Models. Bioengineering 2023, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- Francesco, L.; Musciotto, F.; Montresor, A.; Battiston, F. Hyperlink communities in higher-order networks. J. Complex Netw. 2024, 12, cnae013. [Google Scholar]
- Borgatti, S.; Everett, M.; Johnson, J.; Agneessens, F. Analyzing Social Networks; SAGE Publications Limited: New York, NY, USA, 2024. [Google Scholar]
- Hi, L.; Tong, H.; Tang, J.; Lin, C. Vegas: Visual influence graph summarization on citation networks. IEEE Trans. Knowl. Data Eng. 2015, 27, 3417–3431. [Google Scholar]
- Sui, P.; Yang, X. A privacy-preserving compression storage method for large trajectory data in road networks. J. Grid Comput. 2018, 16, 229–245. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Lu, H.; Zhou, F.; Karim, S.; Hajati, F.; Moni, M. Road networks and socio-demographic factors to explore COVID-19 infection during its different waves. Sci. Rep. 2024, 14, 1551. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, X.; Kong, X.; Yang, C.; Chen, L. Optimal participation and cost allocation of shared energy storage considering customer directrix load demand response. J. Energy Storage 2024, 81, 110404. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.; Kwon, O. Biomedical Relation Extraction Using Dependency Graph and Decoder-Enhanced Transformer Model. Bioengineering 2023, 10, 586. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Sabu, C.; Balasubramanian, K.; Manyam, R.; Kidambi, R.; Sadiq, A.; Farhan, A. Optimization system based on convolutional neural network and internet of medical things for early diagnosis of lung cancer. Bioengineering 2023, 10, 320. [Google Scholar] [CrossRef]
- Xing, J.; Yuan, H.; Hamzaoui, R.; Liu, H.; Hou, J. GQE-Net: A Graph-Based Quality Enhancement Network for Point Cloud Color Attribute. IEEE Trans. Image Process. 2023, 32, 6303–6317. [Google Scholar] [CrossRef]
- Hu, F.; Qiu, L.; Wei, S.; Zhou, H.; Bathuure, I.; Hu, H. The spatiotemporal evolution of global innovation networks and the changing position of China: A social network analysis based on cooperative patents. R&D Manag. 2024, 54, 574–589. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y. Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Comput. Appl. 2021, 33, 8227–8235. [Google Scholar] [CrossRef]
- Wang, K.; Boonpratatong, A.; Chen, W.; Ren, L.; Wei, G.; Qian, Z.; Lu, X.; Zhao, D. The Fundamental Property of Human Leg During Walking: Linearity and Nonlinearity. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 4871–4881. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, E.; Yang, Y.; Chang, Y. A Unified Collaborative Representation Learning for Neural-Network Based Recommender Systems. IEEE Trans. Knowl. Data Eng. 2022, 34, 5126–5139. [Google Scholar] [CrossRef]
- Li, H.; Xia, C.; Wang, T.; Wang, Z.; Cui, P.; Li, X. GRASS: Learning Spatial–Temporal Properties From Chainlike Cascade Data for Microscopic Diffusion Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2023, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xu, D.; Huang, Y.; Jin, Z.; Ding, W.; Tong, J.; Chong, G. Graph Structure Enhanced Pre-Training Language Model for Knowledge Graph Completion. IEEE Trans. Emerging Top. Comput. Intell. 2024, 1, 1–12. [Google Scholar] [CrossRef]
- Sideris, N.; Bardis, G.; Voulodimos, A.; Miaoulis, G.; Ghazanfarpour, D. Enhancing Urban Data Analysis: Leveraging Graph-Based Convolutional Neural Networks for a Visual Semantic Decision Support System. Sensors 2024, 24, 1335. [Google Scholar] [CrossRef]
- Huang, J.; Wu, W.; Li, J.; Wang, S. Text summarization method based on gated attention graph neural network. Sensors 2023, 23, 1654. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Yu, D.; Wu, R.; Yang, Q.; Deng, S.; Xu, G. Intent-aware Graph Neural Network for Point-of-Interest embedding and recommendation. Neurocomputing 2023, 557, 126734. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Yu, D.; Guan, L.; Wang, D.; Zhou, F.; Zhang, W. Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition. Sensors 2023, 23, 5414. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Yin, Y.; Yu, D.; Xu, G.; Deng, S. Multi-view enhanced graph attention network for session-based music recommendation. ACM Trans. Inf. Syst. 2023, 42, 16. [Google Scholar] [CrossRef]
- Lim, H.; Joo, Y.; Ha, E.; Song, Y.; Yoon, S.; Shin, T. Brain Age Prediction Using Multi-Hop Graph Attention Combined with Convolutional Neural Network. Bioengineering 2024, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Guo, Y.; Su, Q.; Wang, Z. Task Allocation of Multiple Unmanned Aerial Vehicles Based on Deep Transfer Reinforcement Learning. Drones 2022, 6, 215. [Google Scholar] [CrossRef]
- Tian, J.; Wang, B.; Guo, R.; Wang, Z.; Cao, K.; Wang, X. Adversarial Attacks and Defenses for Deep-Learning-Based Unmanned Aerial Vehicles. IEEE Internet Things J. 2022, 9, 22399–22409. [Google Scholar] [CrossRef]
- Zheng, W.; Lu, S.; Cai, Z.; Wang, R.; Wang, L.; Yin, L. PAL-BERT: An Improved Question Answering Model. Comput. Model. Eng. Sci. 2024, 139, 2729–2745. [Google Scholar] [CrossRef]
- Dang, W.; Cai, L.; Liu, M.; Li, X.; Yin, Z.; Liu, X.; Zheng, W. Increasing Text Filtering Accuracy with Improved LSTM. Comput. Inform. 2024, 42, 1491–1517. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, M. Biomedical Data Mining and Machine Learning for Disease Diagnosis and Health Informatics. Bioengineering 2024, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tang, T.; Tan, L.; Zhang, H. Fault Detection for Point Machines: A Review, Challenges, and Perspectives. Actuators 2023, 12, 391. [Google Scholar] [CrossRef]
- Usategui, I.; Arroyo, Y.; Torres, A.; Barbado, J.; Mateo, J. Systemic Lupus Erythematosus: How Machine Learning Can Help Distinguish between Infections and Flares. Bioengineering 2024, 11, 90. [Google Scholar] [CrossRef]
- Zhou, T.; Cai, Z.; Liu, F.; Su, J. In Pursuit of Beauty: Aesthetic-Aware and Context-Adaptive Photo Selection in Crowdsensing. IEEE Trans. Knowl. Data Eng. 2023, 35, 9364–9377. [Google Scholar] [CrossRef]
- Lee, K.; Jo, H.; Ko, J.; Lim, S.; Shin, K. Ssumm: Sparse summarization of massive graphs. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020. [Google Scholar]
- Chintalapudi, N.; Angeloni, U.; Battineni, G.; Di Canio, M.; Marotta, C.; Rezza, G.; Amenta, F. LASSO regression modeling on prediction of medical terms among seafarers’ health documents using tidy text mining. Bioengineering 2022, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Christoph, F.; Hirsch, T.; Wolfbeis, O. Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 2014, 53, 3318–3335. [Google Scholar]
- Li, T.; Xu, Y.; Wu, T.; Charlton, J.; Bennett, K.; Al-Hindawi, F. BlobCUT: A Contrastive Learning Method to Support Small Blob Detection in Medical Imaging. Bioengineering 2023, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- Kareem, A.; Liu, H.; Velisavljevic, V. A Privacy-preserving Approach to Effectively Utilize Distributed Data for Malaria Image Detection. Bioengineering 2024, 11, 340. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC Trends Anal. Chem. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Tae-Gyu, L.; Ko, M.; Lee, S. Wearable multiple biosensing process architecture in human healthcare environments. Int. J.-Bio-Sci.-Bio-Technol. 2014, 6, 177–184. [Google Scholar]
- Mikhail, P.; Ha, B.; Peters, B. GOnet: A tool for interactive Gene Ontology analysis. BMC Bioinform. 2018, 19, 470. [Google Scholar]
- Rossi, R.; Ahmed, N. The network data repository with interactive graph analytics and visualization. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [Google Scholar]
- Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; Di Bernardo, D. How to infer gene networks from expression profiles. Mol. Syst. Biol. 2007, 3, 78. [Google Scholar] [CrossRef]
- Yu, G.; Ye, Q.; Ruan, T. Enhancing Error Detection on Medical Knowledge Graphs via Intrinsic Label. Bioengineering 2024, 11, 225. [Google Scholar] [CrossRef]
- Kang, S.; Lee, K.; Shin, K. Personalized graph summarization: Formulation, scalable algorithms, and applications. In Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022. [Google Scholar]
- Shin, K.; Ghoting, A.; Kim, M.; Raghavan, H. Sweg: Lossless and lossy summarization of web-scale graphs. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 1679–1690. [Google Scholar]
- Yong, Q.; Hajiabadi, M.; Srinivasan, V.; Thomo, A. Efficient graph summarization using weighted lsh at billion-scale. In Proceedings of the 2021 International Conference on Management of Data, Auckland, New Zealand, 7–10 December 2021; pp. 2357–2365. [Google Scholar]
- Khan, K.; Dolgorsuren, B.; Anh, T.; Nawaz, W.; Lee, Y. Faster compression methods for a weighted graph using locality sensitive hashing. Inf. Sci. 2017, 421, 237–253. [Google Scholar] [CrossRef]
- Liu, Y.; Dighe, A.; Safavi, T.; Koutra, D. A graph summarization: A survey. CoRR 2016, arXiv:1612.04883. [Google Scholar]
- Khan, K.; Nawaz, W.; Lee, Y. Set-based approximate approach for lossless graph summarization. Computing 2015, 97, 1185–1207. [Google Scholar] [CrossRef]
- Zhao, S.; Liang, W.; Wang, K.; Ren, L.; Qian, Z.; Chen, G.; Lu, X.; Zhao, D.; Wang, X.; Ren, L. A Multiaxial Bionic Ankle Based on Series Elastic Actuation With a Parallel Spring. IEEE Trans. Ind. Electron. 2024, 71, 7498–7510. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Z.; Huang, X.; Qian, Y.; Li, Z.; Chen, H. Aligning Distillation For Cold-Start Item Recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, Taiwan, 23–27 July 2023; pp. 23–27. [Google Scholar] [CrossRef]
- Zou, W.; Sun, Y.; Zhou, Y.; Lu, Q.; Nie, Y.; Sun, T.; Peng, L. Limited Sensing and Deep Data Mining: A New Exploration of Developing City-Wide Parking Guidance Systems. IEEE Intell. Transp. Syst. Mag. 2022, 14, 198–215. [Google Scholar] [CrossRef]
- Xie, X.; Xie, B.; Cheng, J.; Chu, Q.; Dooling, T. A simple Monte Carlo method for estimating the chance of a cyclone impact. Nat. Hazards 2021, 107, 2573–2582. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, Z.; Irizarry, J.; Lin, D.; Zhang, H.; Li, N.; Cui, J. Automatic Identification of Causal Factors from Fall-Related Accident Investigation Reports Using Machine Learning and Ensemble Learning Approaches. J. Manag. Eng. 2024, 40, 04023050. [Google Scholar] [CrossRef]
- Chakraborty, T.; Naik, S.; Chattopadhyay, S.; Das, S. Learning Patterns from Biological Networks: A Compounded Burr Probability Model. Res. Sq. 2023, 1, 1–21. [Google Scholar]
- Xia, W.; Pu, L.; Zou, X.; Shilane, P.; Li, S.; Zhang, H.; Wang, X. The Design of Fast and Lightweight Resemblance Detection for Efficient Post-Deduplication Delta Compression. ACM Trans. Storage 2023, 19, 22. [Google Scholar] [CrossRef]
- Tian, G.; Hui, Y.; Lu, W.; Tingting, W. Rate-distortion optimized quantization for geometry-based point cloud compression. J. Electron. Imaging 2023, 32, 13047. [Google Scholar] [CrossRef]
- Chadaga, K.; Prabhu, S.; Bhat, V.; Sampathila, N.; Umakanth, S.; Chadaga, R. A decision support system for diagnosis of COVID-19 from non-COVID-19 influenza-like illness using explainable artificial intelligence. Bioengineering 2023, 10, 439. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Yu, L. Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf. Sci. 2022, 608, 375–391. [Google Scholar] [CrossRef]
- Christopher, M.; Gonzalez, R.; Huynh, J.; Walker, E.; Radha, S.; Bowd, C.; Belghith, A.; Goldbaum, M.; Fazio, M.; Girkin, C. Proactive Decision Support for Glaucoma Treatment: Predicting Surgical Interventions with Clinically Available Data. Bioengineering 2024, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Njimbouom, S.; Kim, J. Optimal feature selection-based dental caries prediction model using machine learning for decision support system. Bioengineering 2023, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Bergauer, L.; Akbas, S.; Braun, J.; Ganter, M.; Meybohm, P.; Hottenrott, S.; Zacharowski, K.; Raimann, F.; Rivas, E.; López-Baamonde, M. Visual blood, visualisation of blood gas analysis in virtual reality, leads to more correct diagnoses: A computer-based, multicentre, simulation study. Bioengineering 2023, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. Eventogram: A visual representation of main events in biomedical signals. Bioengineering 2016, 3, 22. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Ilyas, Q.; Ahmad, M.; Mehmood, A. Automated estimation of crop yield using artificial intelligence and remote sensing technologies. Bioengineering 2023, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.; Chen, P.; Sin, Z.; Lai, S.; Cheng, A. Smart Work Injury Management (SWIM) system: A machine learning approach for the prediction of sick leave and rehabilitation plan. Bioengineering 2023, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Marappan, R.; Raju, S.; Raghavan, R.; Rajan, R.; Khalaf, O.; Abdulsahib, G. Modeling and analysis of hybrid transformation for lossless big medical image compression. Bioengineering 2023, 10, 333. [Google Scholar] [CrossRef]
- Sengupta, S.; Dutta, A.; Abdelmohsen, S.; Alyousef, H.; Rahimi-Gorji, M. Development of a rice plant disease classification model in big data environment. Bioengineering 2022, 9, 758. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.; Liang, S.; Chen, Z.; Xue, J.; Wu, Y. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Zhou, G.; Tang, Y.; Zhang, W.; Liu, W.; Jiang, Y.; Gao, E.; Zhu, Q.; Bai, Y. Shadow Detection on High-Resolution Digital Orthophoto Map Using Semantic Matching. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4504420. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, X. Orthorectification Model for Extra-Length Linear Array Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4709710. [Google Scholar] [CrossRef]
- Tian, W.; Zhao, Y.; Hou, R.; Dong, M.; Ota, K.; Zeng, D.; Zhang, J. A Centralized Control-Based Clustering Scheme for Energy Efficiency in Underwater Acoustic Sensor Networks. IEEE Trans. Green Commun. Netw. 2023, 7, 668–679. [Google Scholar] [CrossRef]
- Hou, X.; Xin, L.; Fu, Y.; Na, Z.; Gao, G.; Liu, Y.; Chen, T. A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 2023, 118, 109034. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, H.; Hou, J.; Hamzaoui, R.; Gao, W. PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling. IEEE Trans. Image Process. 2022, 31, 7389–7402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, H.; Song, R.; Wang, Q.; Xu, J.; Song, B. Orthorectification of Fisheye Image under Equidistant Projection Model. Remote Sens. 2022, 14, 4175. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Wang, X.; Wang, J.; Long, Q.; Yin, L. Picture fuzzy decision-making theories and methodologies: A systematic review. Int. J. Syst. Sci. 2023, 54, 2663–2675. [Google Scholar] [CrossRef]
- Cai, D.; Li, R.; Hu, Z.; Lu, J.; Li, S.; Zhao, Y. A comprehensive overview of core modules in visual SLAM framework. Neurocomputing 2024, 590, 127760. [Google Scholar] [CrossRef]
- Yang, D.; Cui, Z.; Sheng, H.; Chen, R.; Cong, R.; Wang, S.; Xiong, Z. An Occlusion and Noise-aware Stereo Framework Based on Light Field Imaging for Robust Disparity Estimation. IEEE Trans. Comput. 2023, 73, 764–777. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, R.; Zhang, T.; Wang, Y.; Wang, S. Hydrodynamic Modeling and Parameter Identification of a Bionic Underwater Vehicle: RobDact. Cyborg Bionic Syst. 2022, 2022. [Google Scholar] [CrossRef]
- Zou, X.; Yuan, J.; Shilane, P.; Xia, W.; Zhang, H.; Wang, X. From Hyper-Dimensional Structures to Linear Structures: Maintaining Deduplicated Data’s Locality. ACM Trans. Storage 2022, 18, 25. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, K.; Gamboa, H.; Xue, T.; Schultz, T. Bell Shape Embodying Zhongyong: The Pitch Histogram of Traditional Chinese Anhemitonic Pentatonic Folk Songs. Appl. Sci. 2022, 12, 8343. [Google Scholar] [CrossRef]
- Zhu, G.; Yong, L.; Zhao, X.; Liu, Y.; Zhang, Z.; Xu, Y.; Sun, Z.; Sang, L.; Wang, L. Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: A stable isotope perspective. Hydrol. Earth Syst. Sci. 2022, 26, 3771–3784. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST—PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, H.; Yu, S.; Shi, J. Stereo Matching With Fusing Adaptive Support Weights. IEEE Access 2019, 7, 61960–61974. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, H.; He, L.; Zhao, Q.; Shi, J.; Wu, W. Real-time stereo matching with high accuracy via Spatial Attention-Guided Upsampling. Appl. Intell. 2023, 53, 24253–24274. [Google Scholar] [CrossRef]
- Gu, Y.; Hu, Z.; Zhao, Y.; Liao, J.; Zhang, W. MFGTN: A multi-modal fast gated transformer for identifying single trawl marine fishing vessel. Ocean. Eng. 2024, 303, 117711. [Google Scholar] [CrossRef]
- Yang, M.; Han, W.; Song, Y.; Wang, Y.; Yang, S. Data-model fusion driven intelligent rapid response design of underwater gliders. Adv. Eng. Inform. 2024, 61, 102569. [Google Scholar] [CrossRef]
- Qi, F.; Tan, X.; Zhang, Z.; Chen, M.; Xie, Y.; Ma, L. Glass Makes Blurs: Learning the Visual Blurriness for Glass Surface Detection. IEEE Trans. Ind. Inform. 2024, 20, 6631–6641. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Wang, X.; Wu, Y. Query preserving graph compression. In Proceedings of the 38th ACM SIGMOD International Conference on Management of Data, Scottsdale, AZ, USA, 20–24 May 2012; pp. 157–168. [Google Scholar]
- Khan, K. Set-based approach for lossless graph summarization using locality sensitive hashing. In Proceedings of the 31st IEEE International Conference on Data Engineering Workshops, Seoul, Republic of Korea, 3–17 April 2015; pp. 255–259. [Google Scholar]
- Wu, Y.; Jin, R.; Zhang, X. Fast and unified local search for random walk-based k-nearest-neighbor query in large graphs. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014. [Google Scholar]
- Kumar, K.; Efstathopoulos, P. Utility-driven graph summarization. Proc. VLDB Endow. 2018, 12, 335–347. [Google Scholar] [CrossRef]
- Mishra, P.; Kumar, S.; Chaube, M. Graph interpretation, summarization and visualization techniques: A review and open research issues. Multimed. Tools Appl. 2023, 82, 8729–8771. [Google Scholar] [CrossRef]
- Koutra, D.; Kang, U.; Vreeken, J.; Faloutsos, C. Vog: Summarizing and understanding large graphs. In Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 April 2014; pp. 91–99. [Google Scholar]
- Ko, J.; Kook, Y.; Shin, K. Incremental lossless graph summarization. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 317–327. [Google Scholar]
- Zhou, H.; Liu, S.; Lee, K.; Shin, K.; Shen, H.; Cheng, X. Dpgs: Degree-preserving graph summarization. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). SIAM, Virtual, 29 April–1 May 2021; pp. 280–288. [Google Scholar]
- Navlakha, S.; Rastogi, R.; Shrivastava, N. Graph summarization with bounded error. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008; pp. 419–432. [Google Scholar]
- Omid, J.; Maurya, P.; Nagarkar, P.; Islam, K.; Crushev, C. A survey on locality sensitive hashing algorithms and their applications. arXiv 2021, arXiv:2102.08942. [Google Scholar]
- Koutra, D.; Kang, U.; Vreeken, J.; Faloutsos, C. Summarizing and understanding large graphs. Stat. Anal. Data Mining Asa Data Sci. J. 2015, 8, 183–202. [Google Scholar] [CrossRef]
- Shrivastava, A.; Li, P. Improved densification of one permutation hashing. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI), Quebec City, QC, Canada, 23–27 July 2014; pp. 732–741. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashmi, S.J.; Alabdullah, B.; Al Mudawi, N.; Algarni, A.; Jalal, A.; Liu, H. Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization. Sensors 2024, 24, 4554. https://doi.org/10.3390/s24144554
Hashmi SJ, Alabdullah B, Al Mudawi N, Algarni A, Jalal A, Liu H. Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization. Sensors. 2024; 24(14):4554. https://doi.org/10.3390/s24144554
Chicago/Turabian StyleHashmi, Syed Jalaluddin, Bayan Alabdullah, Naif Al Mudawi, Asaad Algarni, Ahmad Jalal, and Hui Liu. 2024. "Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization" Sensors 24, no. 14: 4554. https://doi.org/10.3390/s24144554
APA StyleHashmi, S. J., Alabdullah, B., Al Mudawi, N., Algarni, A., Jalal, A., & Liu, H. (2024). Enhanced Data Mining and Visualization of Sensory-Graph-Modeled Datasets through Summarization. Sensors, 24(14), 4554. https://doi.org/10.3390/s24144554