Research on the Depth Image Reconstruction Algorithm Using the Two-Dimensional Kaniadakis Entropy Threshold
Abstract
:1. Introduction
2. Proposed Method
2.1. Construction of Point Cloud-Intensity Data
2.2. Automatic Thresholding by Derivative Method
2.3. Two-Dimensional Kaniadakis Entropy Thresholding Method
3. Evaluation and Simulation
3.1. Evaluation
3.2. Simulation
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salmane, P.; Velázquez, J.; Khoudour, L.; Mai, N.; Duthon, P.; Crouzil, A.; Pierre, G.; Velastin, S. 3D Object Detection for Self-Driving Cars Using Video and LiDAR: An Ablation Study. Sensors 2023, 23, 20. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Sun, J.; Wei, J.; Wang, Q. Research of underwater target detection using a Slit Streak Tube Imaging Lidar. In Proceedings of the 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, Harbin, China, 12–16 October 2011. [Google Scholar] [CrossRef]
- Cheung, S.; Slatton, K.; Cho, H.; Dean, R. Multiscale parameterization of LIDAR elevations for reducing complexity in hydraulic models of coastal urban areas. J. Appl. Remote Sens. 2011, 5, 053508. [Google Scholar] [CrossRef]
- Johnson, S.E. Cramer–Rao lower bound on range error for LADARs with Geiger-mode avalanche photodiodes. Appl. Opt. 2010, 49, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, X.; Jiang, P.; Hong, Y.; Yu, C.; Cao, Y.; Zhang, J.; Xu, F.; Pan, J. Super-resolution single-photon imaging at 8.2 kilometers. Opt. Express 2020, 28, 4076. [Google Scholar] [CrossRef]
- Li, Z.; Ye, J.; Huang, X.; Jiang, P.; Cao, Y.; Hong, Y.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C. Single-photon imaging over 200 km. Optica 2021, 8, 344–349. [Google Scholar] [CrossRef]
- Oh, M.; Kong, H.; Kim, T.; Jo, S. Autofocus technique for three-dimensional imaging, direct-detection laser radar using Geiger-mode avalanche photodiode focal-plane array. Opt. Lett. 2010, 35, 4214–4216. [Google Scholar] [CrossRef]
- Chen, G.; Wiede, C.; Kokozinski, R. Data processing approaches on spad-based D-ToF LiDAR systems: A review. IEEE Sens. J. 2021, 21, 5656–5667. [Google Scholar] [CrossRef]
- Tachella, J.; Altmann, Y.; Mellado, N.; Mccarthy, A.; Tobin, R.; Buller, G.; Tourneret, J.; Mclaughlin, S. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 2019, 10, 4984. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Cao, Y.; Wang, B.; Pan, J. Single-photon computational 3D imaging at 45 km. Photonics Res. 2020, 8, 1532–1540. [Google Scholar] [CrossRef]
- Deng, R.; Jin, X.; Du, D. 3D Location and Trajectory Reconstruction of a Moving Object Behind Scattering Media. IEEE Trans. Comput. Imaging 2022, 8, 371–384. [Google Scholar] [CrossRef]
- Maccarone, A.; McCarthy, A.; Ren, X.; Warburton, R.; Wallace, A.; Moffat, J.; Petillot, Y.; Buller, G. Underwater depth imaging using time-correlated single-photon counting. Opt. Express 2015, 23, 33911–33926. [Google Scholar] [CrossRef] [PubMed]
- Kirmani, A.; Venkatraman, D.; Shin, D.; Colaço, A.; Wong, F.; Shapiro, J.; Goyal, V. First-Photon Imaging. Science 2014, 343, 58–61. [Google Scholar] [CrossRef]
- Rapp, J.; Tachella, J.; Altmann, Y.; McLaughlin, S.; Goyal, V. Advances in Single-Photon Lidar for Autonomous Vehicles: Working Principles, Challenges, and Recent Advances. IEEE Signal Process. Mag. 2020, 37, 62–71. [Google Scholar] [CrossRef]
- Tolt, G.; Grönwall, C.; Henriksson, M. Peak detection approaches for time-correlated single-photon counting three-dimensional lidar systems. Opt. Eng. 2018, 57, 9. [Google Scholar] [CrossRef]
- Nguyen, K.; Fisher, E.; Walton, A.; Underwood, I. An experimentally verified model for estimating the distance resolution capability of direct time of flight 3D optical imaging systems. Meas. Sci. Technol. 2013, 24, 12. [Google Scholar] [CrossRef]
- Lindell, D.; O’Toole, M.; Wetzstein, G. Single-Photon 3D Imaging with Deep Sensor Fusion. ACM Trans. Graph. 2018, 37, 12. [Google Scholar] [CrossRef]
- Shin, D.; Kirmani, A.; Goyal, V.; Shapiro, J. Photon-Efficient Computational 3D and Reflectivity Imaging with Single-Photon Detectors. IEEE Trans. Comput. Imag. 2017, 1, 112–125. [Google Scholar] [CrossRef]
- Shin, D.; Shapiro, J.; Goyal, V. Performance Analysis of Low-Flux Least-Squares Single-Pixel Imaging. IEEE Signal Process. Lett. 2016, 23, 1756–1760. [Google Scholar] [CrossRef]
- Altmann, Y.; Ren, X.; McCarthy, A.; Buller, G.; Mclaughlin, S. Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data. IEEE Trans. Image Process. 2016, 25, 1935–1946. [Google Scholar] [CrossRef]
- Maccarone, A.; Halimi, A.; McCarthy, A. Underwater three-dimensional imaging using single-photon detection. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
- Tobin, R.; Buller, G.; Mccarthy, A.; Halimi, A.; Laurenzis, M.; Christnacher, F.; Buller, G. Three-dimensional single-photon imaging through obscurants. Opt. Express 2019, 27, 4590–4611. [Google Scholar] [CrossRef]
- Rapp, J.; Goyal, V. A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging. IEEE Trans. Comput. Imaging 2017, 3, 445–459. [Google Scholar] [CrossRef]
- Peng, X.; Zhao, X.; Li, L.; Sun, M. First-photon imaging via a hybrid penalty. Photonics Res. 2020, 8, 325–330. [Google Scholar] [CrossRef]
- Hua, K.; Liu, B.; Chen, Z.; Fang, L.; Wang, H. Efficient and Noise Robust Photon-Counting Imaging with First Signal Photon Unit Method. Photonics 2021, 8, 11. [Google Scholar] [CrossRef]
- Ma, L.; Sun, J.; Liu, D.; Zhou, X. Noise-suppression algorithm of GM-APD lidar based on Markov random field. Opt. Laser Technol. 2024, 169, 13. [Google Scholar] [CrossRef]
- Henriksson, M. Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system. Appl. Opt. 2005, 44, 5140–5147. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Li, S.; Lu, W.; Zhou, X.; Zhang, H. A photon-number-based systematic algorithm for range image recovery of GM-APD lidar under few-frames detection. Infrared Phys. Technol. 2022, 125, 13. [Google Scholar] [CrossRef]
- Ma, L.; Sun, J.F.; Jiang, P.; Liu, D.; Zhou, X.; Wang, Q. Signal extraction algorithm of Gm-APD lidar with low SNR return. Optik 2020, 206, 6. [Google Scholar] [CrossRef]
- Sahoo, P.; Arora, G. A thresholding method based on two-dimensional Renyi’s entropy. Pattern Recognit. 2004, 37, 1149–1161. [Google Scholar] [CrossRef]
- Wunnava, A.; Naik, M.K.; Panda, R.; Jena, B.; Abraham, A. An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding. Appl. Soft Comput. 2020, 95, 35. [Google Scholar] [CrossRef]
- Lei, B.; Fan, J. Infrared pedestrian segmentation algorithm based on the two-dimensional Kaniadakis entropy thresholding. Knowl.-Based Syst. 2021, 225, 12. [Google Scholar] [CrossRef]
SBR | Peak-Picking | Cross-Correlation | SPIRAL | Proposed | ||||
---|---|---|---|---|---|---|---|---|
Pr | RMSE | Pr | RMSE | Pr | RMSE | Pr | RMSE | |
0.01 | 0.1% | 1.44 | 0 | 1.43 | 0 | 1.46 | 97.7% | 0.63 |
0.02 | 2.8% | 1.43 | 0 | 1.43 | 1.6% | 1.44 | 1 | 0.58 |
0.04 | 49.3% | 1.12 | 6.1% | 1.39 | 74.7% | 0.84 | 99.9% | 0.63 |
0.06 | 89.2% | 0.73 | 65.9% | 0.98 | 97.2% | 0.44 | 1 | 0.63 |
0.08 | 98.8% | 0.58 | 95.3% | 0.60 | 99.7% | 0.38 | 1 | 0.63 |
Peak-Picking | Cross-Correlation | SPIRAL | Proposed | ||||||
---|---|---|---|---|---|---|---|---|---|
SBR | Pr | RMSE | Pr | RMSE | Pr | RMSE | Pr | RMSE | |
Target 1 | 0.078 | 73.8% | 2.30 | 75.9% | 2.24 | 81.4% | 2.08 | 82.8% | 2.21 |
0.053 | 38.0% | 3.34 | 35.7% | 3.42 | 47.9% | 3.18 | 83.6% | 2.03 | |
0.031 | 6.0% | 4.23 | 4.2% | 4.26 | 6.5% | 4.33 | 78.3% | 2.25 | |
Target 2 | 0.031 | 51.0% | 1.26 | 53.9% | 1.26 | 69.5% | 1.12 | 93.6% | 0.64 |
0.025 | 15.7% | 1.65 | 7.0% | 1.69 | 18.4% | 1.71 | 91.7% | 0.59 |
Total Target | Reconstructed Region | Unreconstructed Region | |||||
---|---|---|---|---|---|---|---|
SBR | μ1 | σ1 | μ2 | σ2 | μ3 | σ3 | |
Target 1 | 0.078 | 0.3168 | 0.1680 | 0.3518 | 0.1588 | 0.1386 | 1.7792 |
0.053 | 0.2124 | 0.1213 | 0.2354 | 0.1165 | 0.0802 | 0.6262 | |
0.031 | 0.1283 | 0.0610 | 0.1441 | 0.0576 | 0.0652 | 0.4679 | |
Target 2 | 0.031 | 0.2674 | 0.1181 | 0.2746 | 0.1163 | 0.1304 | 0.6099 |
0.025 | 0.2300 | 0.0773 | 0.2375 | 0.0745 | 0.1283 | 0.3389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Sun, J.; Ma, L.; Zhou, X.; Lu, W.; Li, S. Research on the Depth Image Reconstruction Algorithm Using the Two-Dimensional Kaniadakis Entropy Threshold. Sensors 2024, 24, 5950. https://doi.org/10.3390/s24185950
Yang X, Sun J, Ma L, Zhou X, Lu W, Li S. Research on the Depth Image Reconstruction Algorithm Using the Two-Dimensional Kaniadakis Entropy Threshold. Sensors. 2024; 24(18):5950. https://doi.org/10.3390/s24185950
Chicago/Turabian StyleYang, Xianhui, Jianfeng Sun, Le Ma, Xin Zhou, Wei Lu, and Sining Li. 2024. "Research on the Depth Image Reconstruction Algorithm Using the Two-Dimensional Kaniadakis Entropy Threshold" Sensors 24, no. 18: 5950. https://doi.org/10.3390/s24185950
APA StyleYang, X., Sun, J., Ma, L., Zhou, X., Lu, W., & Li, S. (2024). Research on the Depth Image Reconstruction Algorithm Using the Two-Dimensional Kaniadakis Entropy Threshold. Sensors, 24(18), 5950. https://doi.org/10.3390/s24185950