A Muscle Load Feedback Application for Strength Training: A Proof-of-Concept Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Muscle Load Feedback Application
2.3. Procedures
- Control group: no feedback.
- Partial feedback: this group received a visualization of the estimated cumulative muscle load after each exercise via the Gymstory app in the form of the muscle load body map (Figure 1A).
- Complete feedback: this group also received the muscle load body map after each exercise, and additionally received a list with suggestions for subsequent exercises, targeting muscle groups that had not or had barely been loaded yet (Figure 1A,B).
2.4. Statistical Analyses
3. Results
3.1. Muscle Load
3.2. Muscle Soreness
3.3. User Experience
4. Discussion
5. Conclusions
- Feedback regarding the personal muscle load of strength training participants provided in the form of a muscle body map and exercise suggestion can effectively aid in achieving a more balanced cumulative muscle load, which may decrease the risk of overloading certain muscles while underloading other muscles.
- Feedback regarding the muscle load in the form of a body map and suggested exercises was perceived to be valuable and stimulating.
- Feedback regarding the muscle load can effectively guide strength training participants towards a certain load level, presumably helping to maximize training effects without getting injured.
- Feedback regarding the muscle load does not change muscle soreness.
- Future research can improve the accuracy of the muscle load estimation.
- A longitudinal study with a longer follow-up period is needed to investigate if the feedback application can effectively prevent muscle injuries.
6. Practical Application
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lidmaatschappen en Sportdeelname NOC*NSF over 2019. NOC*NSF Afdeling Sportparticipatie. Available online: www.nocnsf.nl (accessed on 21 August 2023).
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef]
- Sportblessures in Nederland. Cijfers 2019; VeiligheidNL: Amsterdam, The Netherlands, 2019.
- Van Mechelen, W.; Hlobil, H.; Kemper, H.C.G. Incidence, Severity, Aetiology and Prevention of Sports Injuries. A review of concepts. Sports Med. 1992, 14, 82–99. [Google Scholar] [CrossRef]
- Kemler, E.; Noteboom, L.; van Beijsterveldt, A.-M. Characteristics of Fitness-Related Injuries in The Netherlands: A Descriptive Epidemiological Study. Sports 2022, 10, 187. [Google Scholar] [CrossRef]
- Szeles, P.R.D.Q.; da Costa, T.S.; da Cunha, R.A.; Hespanhol, L.; Pochini, A.D.C.; Ramos, L.A.; Cohen, M. CrossFit and the Epidemiology of Musculoskeletal Injuries: A Prospective 12-Week Cohort Study. Orthop. J. Sports Med. 2020, 8, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Moran, S.; Booker, H.; Staines, J.; Williams, S. Rates and risk factors of injury in CrossFit: A prospective cohort study. J. Sports Med. Phys. Fit. 2017, 57, 1147–1153. [Google Scholar] [CrossRef]
- Keogh, J.; Hume, P.A.; Pearson, S. Retrospective Injury Epidemiology of One Hundred One Competitive Oceania Power Lifters: The Effects of Age, Body Mass, Competitive Standard, and Gender. J. Strength Cond. Res. 2006, 20, 672–681. [Google Scholar] [CrossRef]
- Abouammoh, N.; Aldebeyan, W.; Aljadaan, B.; Dous, A.; Almashouq, M.; Alsubaie, A.; Alshahrani, A.; Alghamdi, H.; Alsoliman, M. Injury rate among CrossFit participants and its associated risk factors in Riyadh: A cross-sectional study. Saudi J. Sports Med. 2021, 21, 45–50. [Google Scholar] [CrossRef]
- Reichel, T.; Mitnacht, M.; Fenwick, A.; Meffert, R.; Hoos, O.; Fehske, K. Incidence and characteristics of acute and overuse injuries in elite powerlifters. Cogent Med. 2019, 6, 1588192. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Cardozo, L.A.; Vélez-Gutiérrez, J.M.; Arévalo-Rodríguez, A.; Vargas-Molina, S.; Stout, J.R.; Kreider, R.B.; Petro, J.L. Exercise selection and common injuries in fitness centers: A systematic integrative review and practical recommendations. Int. J. Environ. Res. Public Health 2022, 19, 12710. [Google Scholar] [CrossRef]
- Sportblessures in Nederland. Cijfers 2017; VeiligheidNL: Amsterdam, The Netherlands, 2017.
- Wilson, K.M.; Helton, W.S.; de Joux, N.R.; Head, J.R.; Weakley, J.J.S. Real-time quantitative performance feedback during strength exercise improves motivation, competitiveness, mood, and performance. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1546–1550. [Google Scholar] [CrossRef]
- Sigrist, R.; Rauter, G.; Riener, R.; Wolf, P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychon. Bull. Rev. 2012, 20, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Gymstory. Available online: https://www.yourgymstory.com (accessed on 21 August 2023).
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Ball, T.E.; Arnold, M.D.; Bowen, J.C. Relative muscular endurance performance as a predictor of bench press strength in college men and women. J. Appl. Sport Sci. Res. 1992, 6, 200–206. [Google Scholar]
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and Evaluation of a User Experience Questionnaire. In HCI and Usability for Education and Work; Holzinger, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–76. ISBN 978-3-540-89349-3. [Google Scholar] [CrossRef]
- Schrepp, M.; Thomaschewski, J.; Hinderks, A. Construction of a benchmark for the user experience questionnaire (UEQ). Int. J. Interact. Multimed. Artif. Intell. 2017, 4, 40–44. [Google Scholar] [CrossRef]
- Liang, K.Y.; Zeger, S.L. Regression analysis for correlated data. Annu. Rev. Public Health 1993, 14, 43–68. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.J.; Wilson, K.M.; Till, K.; Read, D.B.; Darrall-Jones, J.; Roe, G.A.; Phibbs, P.J.; Jones, B. Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. J. Strength Cond. Res. 2019, 33, 2420–2425. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Lauber, B.; Gehring, D.; Leukel, C.; Taube, W. Jump performance and augmented feedback: Immediate benefits and long-term training effects. Hum. Mov. Sci. 2014, 36, 177–189. [Google Scholar] [CrossRef]
- Chalker, W.J.; Shield, A.J.; Opar, D.A.; Rathbone, E.N.; Keogh, J.W. Effect of acute augmented feedback on between limb asymmetries and eccentric knee flexor strength during the Nordic hamstring exercise. PeerJ 2018, 6, e4972. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Z. Biomechanical methods to quantify muscle effort during resistance exercise. J. Strength Cond. Res. 2018, 32, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: 3D human movement dynamics from smartphone videos. bioRxiv 2022. [Google Scholar] [CrossRef]
Item | Control (n = 10) | Partial Feedback (n = 10) | Complete Feedback (n = 10) | p-Value | |||
---|---|---|---|---|---|---|---|
n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) | Mean ± SD | ||
Sex Male Female | 5 (50%) 5 (50%) | 6 (60%) 4 (40%) | 5 (50%) 5 (50%) | 0.886 | |||
Age (years) | 38 ± 14 | 39 ± 15 | 36 ± 15 | 0.934 | |||
Strength training experience (years) | 2.5 ± 2.6 | 2.2 ± 2.4 | 2.4 ± 2.5 | 0.963 |
Independent Variables | Cumulative Muscle Load CV (β and 95% CI) | Mean Cumulative Muscle Load (β and 95% CI) | Mean Muscle Soreness (β and 95% CI) | |
---|---|---|---|---|
Group | Control a | 0 | 0 | 0 |
Partial | −6.8 (−19.5, 6.0) | 7.5 (−7.3, 22.3) | −0.5 (−2.8, 1.8) | |
Complete | −18.9 (−29.3, −8.6) * | 1.3 (−9.5, 12.0) | 0.9 (−1.8, 3.6) | |
Workout number | 1 a | 0 | 0 | 0 |
2 | 5.0 (−4.4, 14.3) | 0.7(−14.4, 15.7) | 1.2 (−1.4, 3.8) | |
3 | 5.1 (−3.9, 14.1) | 4.0 (−7.8, 15.8) | −0.7 (−2.5, 1.2) | |
4 | 2.5 (−5.0, 10.0) | 12.5 (−4.8, 29.8) | −1.9 (−3.5,−0.2) * | |
5 | 8.9 (−0.6, 18.4) | 16.4 (−1.1, 33.9) | −1.0 (−2.4, 0.5) | |
6 | 6.7 (−3.7, 17.1) | 22.1 (0.9, 43.4) * | −0.3 (−2.1, 1.5) | |
7 | 0.6 (−10.2, 11.3) | 16.1(−0.9, 33.0) | −1.2 (−3.5, 1.0) | |
8 | −0.3 (−8.7, 8.1) | 27.6 (4.7, 50.5) * | −1.1 (−3.5, 1.4) | |
Interaction group * workout number | Control*1 a | 0 | ||
Control*2 a | 0 | |||
Control*3 a | 0 | |||
Control*4 a | 0 | |||
Control*5 a | 0 | |||
Control*6 a | 0 | |||
Control*7 a | 0 | |||
Control*8 a | 0 | |||
Partial*1 a | 0 | |||
Partial*2 | −5.2 (−24.0, 13.7) | |||
Partial*3 | 0.7 (−15.5, 17.0) | |||
Partial*4 | 0.2 (−19.4, 19.8) | |||
Partial*5 | −15.2 (−37.3, 7.0) | |||
Partial*6 | −24.0 (−47.9, −0.1) * | |||
Partial*7 | −13.5 (−33.9, 6.8) | |||
Partial*8 | −37.6 (−62.4, −12.9) * | |||
Complete*1 a | 0 | |||
Complete*2 | 4.8 (−13.4, 22.9) | |||
Complete*3 | −7.6 (−21.3, 6.1) | |||
Complete*4 | −11.9(−30.1, 6.4) | |||
Complete*5 | −14.5 (−34.2, 5.3) | |||
Complete*6 | −24.3 (−46.3, −2.2) * | |||
Complete*7 | −14.3(−33.5, 4.9) | |||
Complete*8 | −26.3 (−49.5, −3.0) * |
Scale | Post Hoc Comparisons | Mean Difference | Standard Error | df | F-Value | p-Value | Effect Size r |
---|---|---|---|---|---|---|---|
Attractiveness | 2, 26 | 4.465 | 0.022 * | 0.506 | |||
Control–Partial | −0.080 | 0.430 | 1.000 | ||||
Control–Complete | −1.127 | 0.418 | 0.036 * | ||||
Partial–Complete | −1.047 | 0.430 | 0.066 | ||||
Perspicuity | 2, 26 | 3.826 | 0.035 * | 0.477 | |||
Control–Partial | 0.161 | 0.377 | 1.000 | ||||
Control–Complete | −0.800 | 0.367 | 0.116 | ||||
Partial–Complete | −0.961 | 0.377 | 0.051 | ||||
Efficiency | 2, 26 | 3.810 | 0.035 * | 0.476 | |||
Control–Partial | 0.200 | 0.462 | 1.000 | ||||
Control–Complete | −0.975 | 0.449 | 0.118 | ||||
Partial–Complete | −1.175 | 0.462 | 0.051 | ||||
Dependability | 2, 26 | 4.403 | 0.023 * | 0.503 | |||
Control–Partial | 0.500 | 0.332 | 0.430 | ||||
Control–Complete | −0.483 | 0.323 | 0.439 | ||||
Partial–Complete | −0.983 | 0.331 | 0.019 * | ||||
Stimulation | 2, 26 | 4.402 | 0.023 * | 0.503 | |||
Control–Partial | −0.136 | 0.325 | 1.000 | ||||
Control–Complete | −0.875 | 0.316 | 0.031 * | ||||
Partial–Complete | −0.739 | 0.325 | 0.094 | ||||
Novelty | 2, 26 | 5.170 | 0.013 * | 0.533 | |||
Control–Partial | −0.117 | 0.329 | 1.000 | ||||
Control–Complete | −0.950 | 0.320 | 0.019 * | ||||
Partial–Complete | −0.833 | 0.329 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noteboom, L.; Nijs, A.; Beek, P.J.; van der Helm, F.C.T.; Hoozemans, M.J.M. A Muscle Load Feedback Application for Strength Training: A Proof-of-Concept Study. Sports 2023, 11, 170. https://doi.org/10.3390/sports11090170
Noteboom L, Nijs A, Beek PJ, van der Helm FCT, Hoozemans MJM. A Muscle Load Feedback Application for Strength Training: A Proof-of-Concept Study. Sports. 2023; 11(9):170. https://doi.org/10.3390/sports11090170
Chicago/Turabian StyleNoteboom, Lisa, Anouk Nijs, Peter J. Beek, Frans C. T. van der Helm, and Marco J. M. Hoozemans. 2023. "A Muscle Load Feedback Application for Strength Training: A Proof-of-Concept Study" Sports 11, no. 9: 170. https://doi.org/10.3390/sports11090170
APA StyleNoteboom, L., Nijs, A., Beek, P. J., van der Helm, F. C. T., & Hoozemans, M. J. M. (2023). A Muscle Load Feedback Application for Strength Training: A Proof-of-Concept Study. Sports, 11(9), 170. https://doi.org/10.3390/sports11090170