Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experiment
2.2. Agro-Climatic Conditions of Growing Seasons
2.3. Experimental Treatments and Design
2.4. Experimental Procedures
2.5. Data Ccollection and Analysis
2.6. Data Analysis
3. Results and Discussion
3.1. Effects of N Fertilization on SPAD and NDVI Values
3.2. Effects of N Fertilization on the Growth, Grain Yield and Yield
3.3. Effects of N Fertilization on the Quality Traits of Durum Wheat
3.4. Correlation Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gilland, B. World population and food supply: Can food production keep pace with population growth in the next half-century? Food Policy 2002, 27, 47–63. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, M.A.; Junaid, R.; Wajid, N.; Sabry, H.; Yassir, K.; Ayman, S. Rainfed winter wheat cultivars respond differently to integrated fertilization in Azad Kashmir, Pakistan. Fres. Environ. Bullet. 2021, 30, 3115–3121. [Google Scholar]
- Borlaug, N.E.; Dowswell, C.R. The acid lands: One of agriculture’s last frontiers. In Plant-Soil Interactions at Low pH; Brazilian Soil Science Society: Rio de Janeiro, Brazil, 1997; pp. 5–15. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, M.H.; Iqbal, M.A.; Naeem, W.; Hussain, I.; Abdul, K. Bio-economic viability of rainfed wheat (Triticum aestivum L.) cultivars under integrated fertilization regimes in Pakistan. Custos Agronegocio 2019, 15, 81–96. [Google Scholar]
- World Atlas. What Are the World’s Most Important Staple Foods? Published on 7 June 2019. Available online: https://www.worldatlas.com/articles/most-important-staple-foods-in-the-world.html (accessed on 2 March 2021).
- Kizilgeci, F.; Albayrak, O.; Yildirim, M. Evaluation of thirteen durum wheat (Triticium durum Desf.) genotypes suitable for multiple environments using GGE biplot analysis. Fresenius Environ. Bull. 2019, 28, 6873–6882. [Google Scholar]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.; Girousse, C.; Motzo, R.; Giunta, F.; Babar, M.A.; et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, M.; Yakut, Z.; Akinci, C.; Kurt, F.; Kizilgeci, F. Nitrogen rate and timing implementation on durum wheat in a bed planting system. Sains Malays. 2016, 45, 221–228. [Google Scholar]
- Kizilgeçi, F.; Yildirim, M.; Akinci, C. Nitrogen Use Efficiency (NUE) Changes in durum wheat parents and their F2 progenies under different nitrogen conditions. J. Agric. Fac. Gaziosmanpasa Univ. 2016, 33, 96–102. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Imtiaz, H.; Muzammil, H.S.; Essa, A.; Zahoor, A. Probing profitability of irrigated and rainfed bread wheat (Triticum aestivum L.) crops under foliage applied sorghum and moringa extracts in Pakistan. Custos Agronegocio 2018, 14, 2–16. [Google Scholar]
- Kizilgeci, F.; Akinci, C.; Yildirim, M. Improving grain yield, protein ratio and nitrogen use efficiency of durum wheat (Triticum durum Desf.) hybrids using spad meter as a selection criterion. Int. J. Agric. Environ. Food Sci. 2019, 3, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Karimpour, M.; Siosemardeh, A.; Fateh, H.; Badakhshan, H.; Heidari, G. Effect of nitrogen fertilizer on yield and some physiological charachteristics on two drought resistance and susceptible wheat (Triticum aestivum L.) cultivars in response to water stress. Int. J. Farm. Alli. Sci. 2013, 2, 311–324. [Google Scholar]
- Mantai, R.D.; da Silva, J.A.G.; Arenhardt, E.G.; Sausen, A.T.Z.R.; Binello, M.O.; Bianchi, V.; Rodrigues da Silva, D.; Bandeira, L.M. The dynamics of relation oat panicle with grain yield by nitrogen. Am. J. Plant Sci. 2016, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Vian, A.L.; Bredemeier, C.; Turra, M.A.; Giordano, C.P.D.S.; Fochesatto, E.; Silva, J.A.D.; Drum, M.A. Nitrogen management in wheat based on the normalized difference vegetation index (NDVI). Ciência Rural 2018, 48, 9. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Qi, H.; Zhu, B.; Kong, L.; Yang, W.; Zou, J.; Lan, Y.; Zhang, L. Hyperspectral Inversion Model of Chlorophyll Content in Peanut Leaves. Appl. Sci. 2020, 10, 2259. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Yang, C.M.; Chang, K.W.; Shen, Y. A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron. J. 2008, 100, 205–212. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Mkhabela, M.S. Exploring the possibilities of using noaa, vhrr data to forecast cotton yield in swaziland. UNISWA J. Agric. 2000, 9, 13–21. [Google Scholar] [CrossRef]
- Freeman, K.W.; Raun, W.R.; Johnson, G.V.; Mullen, R.W.; Stone, M.L.; Solie, J.B. Late-season prediction of wheat grain yield and grain protein. Commun. Soil Sci. Plant Anal. 2003, 34, 1837–1852. [Google Scholar] [CrossRef]
- Wall, L.; Larocque, D.; Léger, P.M. The early explanatory power of NDVI in crop yield modelling. Int. J. Remote Sens. 2008, 29, 2211–2225. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bu, H.; Denton, A.; Franzen, D.W. Active-optical sensors using red NDVI compared to red edge NDVI for prediction of corn grain yield in North Dakota, USA. Sensors 2015, 15, 27832–27853. [Google Scholar] [CrossRef] [PubMed]
- Kizilgeci, F.; Yildirim, M. The relationship of some physiological traits measured at heading stage with yield and quality properties of durum wheat. Turk. J. Agric. Nat. Sci. 2019, 6, 777–785. [Google Scholar]
- Liu, H.Q.; Huete, A.A. feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crop. Res. 2001, 72, 197–210. [Google Scholar] [CrossRef]
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Wheat yield and grain protein response to nitrogen amount and timing. Aust. J. Crop Sci. 2011, 5, 330–336. [Google Scholar]
- Karki, T.B. Yield prediction and nitrogen recommendation in maize using normalized difference vegetation index. Agron. J. Nepal 2013, 3, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Rambo, L.; Ma, B.L.; Xiong, Y.; Regis Ferreira da Silvia, P. Leaf and canopy optical characteristics as crop-N-status indicators for field nitrogen management in corn. J. Plant Nutr. Soil Sci. 2010, 173, 434–443. [Google Scholar] [CrossRef]
- Inman, D.; Khosla, R.; Reich, R.; Westfall, D.G. Normalized difference vegetation index and soil color-based management zones in irrigated maize. Agron. J. 2008, 100, 60–66. [Google Scholar] [CrossRef]
- Singh, B.; Singh, Y.; Ladha, J.K.; Bronson, K.F.; Balasubramanian, V.; Singh, J.; Khind, C.S. Chlorophyll meter–and leaf color chart–based nitrogen management for rice and wheat in Northwestern India. Agron. J. 2002, 94, 821–829. [Google Scholar] [CrossRef]
- Akhter, M.M.; Hossain, A.; Timsina, J.; Teixeira da Silva, J.A.; Islam, M.S. Chlorophyll meter-a decision-making tool for nitrogen application in wheat under light soils. Int. J. Plant Prod. 2016, 10, 289–302. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, S.; Vidal, D.; Simon, E.; Sole-Sugranes, L. Radiometric characteristics of Triticum aestivum cv, Astral under water and nitrogen stress. Int. J. Remote Sens. 1994, 15, 1867–1884. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. A review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Corp, M.; Horneck, D.A.; Lutcher, L.K. Irrigated and Dryland Canola. Nutrient Management Guide; Published EM 8943-E; Oregon State University Extension: Corvallis, OR, USA, 2007. [Google Scholar]
- Nourmohammadi, G.H.; Siadat, A.; Kashani, A. Cereal Crops, Ninth Printing; Chamran University Press: Ahvaz, Iran, 2010; p. 48. [Google Scholar]
- Sieling, K. Growth stage specific application of slurry and mineral N to oilseed rape, wheat and barley. J. Agric. Sci. 2005, 142, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Marino, S.; Tognetti, R.; Alvino, A. Crop yield and grain quality of emmer populations grown in central Italy, as affected by nitrogen fertilization. Eur. J. Agron. 2009, 31, 233–240. [Google Scholar] [CrossRef]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 78. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Aneta Lisowska, A. Efficiency of Nitrogen Fertilization ofWinter Wheat Depending on Sulfur Fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- Mariem, S.B.; González-Torralba, J.; Concha, C.; Iker Aranjuelo, I.; Fermín Morales, F. Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. Plants 2020, 9, 1636. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Lu, H.; Li, S.; Xie, Y.; Ma, D.; Zhu, Y.; Guo, T. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE 2017, 12, e0178494. [Google Scholar] [CrossRef]
- Tea, I.; Genter, T.; Naulet, N.; Boyer, V.; Lummerzheim, M.; Kleiber, D. Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing properties. Cereal Chem. 2004, 81, 759–766. [Google Scholar] [CrossRef]
- Colecchia, S.A.; Basso, B.; Cammarano, D.; Gallo, A.; Mastrangelo, A.M.; Pontieri, P.; Del Giudice, L.; Pignone, D.; De Vita, P. On the relationship between N management and grain protein content in six durum wheat cultivars in Mediterranean environment. J. Plant Interact. 2013, 8, 271–279. [Google Scholar] [CrossRef]
- Kizilgeci, F. Physiological, agronomical and quality response of bread wheat to phosphorus application under dryland condition. Appl. Ecol. Environ. Res. 2019, 17, 1979–1987. [Google Scholar] [CrossRef]
- Weber, E.A.; Graeff, S.; Koller, W.D.; Hermann, W.; Merkt, N.; Claupein, W. Impact of nitrogen amount and timing on the potential of acrylamide formation in winter wheat (Triticum aestivum L.). Field Crop. Res. 2008, 106, 44–52. [Google Scholar] [CrossRef]
Depth (cm) | Saturation (%) | Soil Texture | pH | EC (ds/m) | CaCO3 (%) | Organic Matter Content (%) | Total N Contents (kg ha−1) | K2O (kg ha−1) | P2O5 (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|
0–20 | 66 | Clayey | 7.5 | 0.114 | 10.04 | 0.63 | 111.9 | 1440 | 20 |
20–40 | 65 | Clayey | 7.6 | 0.128 | 11.02 | 0.81 | 78.3 | 1660 | 12.6 |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||||
---|---|---|---|---|---|---|---|---|
SPAD | NDVIH | NDVI-A | NDVI-M | SPAD | NDVI-H | NDVI-A | NDVI-M | |
Control | 52.3 | 0.63 | 0.49 | 0.38 | 44.9 | 0.48 | 0.36 | 0.30 |
50 | 50.5 | 0.59 | 0.51 | 0.33 | 49.0 | 0.51 | 0.45 | 0.34 |
100 | 52.3 | 0.64 | 0.52 | 0.33 | 50.1 | 0.49 | 0.42 | 0.33 |
150 | 52.8 | 0.66 | 0.56 | 0.34 | 50.9 | 0.59 | 0.49 | 0.38 |
200 | 54.9 | 0.66 | 0.56 | 0.34 | 50.8 | 0.56 | 0.47 | 0.35 |
CV (%) | 5.16 | 7.17 | 8.51 | 21.24 | 5.54 | 10.19 | 10.41 | 10.04 |
Prob. levels | * | * | * | ns | * | * | ** | ** |
LSD (5%) | 2.80 | 0.05 | 0.05 | ns | 2.79 | 0.08 | 0.04 | 0.03 |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPAD | NDVI-H | NDVI-A | NDVI-M | SPAD | NDVI-H | NDVI-A | NDVI-M | |||||||||
G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | |
Control | 53.5 | 51.2 | 0.61 | 0.64 | 0.46 | 0.52 | 0.33 | 0.43 | 46.1 | 43.8 | 0.47 | 0.50 | 0.37 | 0.37 | 0.28 | 0.31 |
50 | 51.1 | 49.9 | 0.59 | 0.59 | 0.48 | 0.53 | 0.28 | 0.38 | 50.0 | 48.0 | 0.51 | 0.50 | 0.43 | 0.47 | 0.34 | 0.35 |
100 | 53.4 | 51.2 | 0.61 | 0.65 | 0.49 | 0.54 | 0.31 | 0.35 | 50.4 | 49.9 | 0.44 | 0.54 | 0.41 | 0.43 | 0.31 | 0.35 |
150 | 53.9 | 51.5 | 0.65 | 0.67 | 0.57 | 0.54 | 0.31 | 0.37 | 52.4 | 49.3 | 0.58 | 0.60 | 0.49 | 0.48 | 0.36 | 0.39 |
200 | 55.4 | 54.3 | 0.65 | 0.66 | 0.55 | 0.56 | 0.28 | 0.39 | 52.3 | 49.2 | 0.60 | 0.53 | 0.50 | 0.44 | 0.36 | 0.34 |
Mean | 53.5 a | 51.6 b | 0.63 | 0.65 | 0.51 | 0.54 | 0.30 a | 0.38 b | 50.2 a | 48.0 b | 0.52 | 0.53 | 0.44 | 0.44 | 0.33 | 0.35 |
CV (%) | 4.92 | 6.57 | 8.13 | 14.3 | 4.12 | 10.15 | 10.4 | 7.76 | ||||||||
Prob. levels | ns | ns | ns | ns | ns | ns | ns | ns | ||||||||
LSD (5%) | ns | ns | ns | ns | ns | ns | ns | ns |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||||
---|---|---|---|---|---|---|---|---|
PH (cm) | SL (cm) | SS | KNS | PH (cm) | SL (cm) | SS | KNS | |
Control | 83.2 | 6.24 | 16.8 | 40.5 | 45.6 | 5.03 | 14.4 | 20.9 |
50 | 83.7 | 6.33 | 17.3 | 39.0 | 44.5 | 5.25 | 14.3 | 19.1 |
100 | 86.6 | 6.72 | 17.6 | 41.0 | 46.1 | 5.41 | 14.1 | 19.6 |
150 | 84.9 | 6.50 | 17.6 | 39.1 | 48.2 | 5.28 | 14.7 | 17.5 |
200 | 85.2 | 6.75 | 18 | 41.2 | 47.7 | 5.37 | 14.8 | 21.7 |
CV (%) | 3.71 | 6.62 | 4.23 | 12.42 | 4.92 | 10.73 | 4.74 | 19.6 |
Prob. levels | ns | ns | * | ns | * | ns | ns | ns |
LSD (5%) | ns | ns | 0.76 | ns | 2.35 | ns | ns | ns |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||
---|---|---|---|---|---|---|
TKW(g) | TW (kg) | GY (kg/ha) | TWK (g) | TW (kg) | GY (kg ha−1) | |
Control | 37.7 | 83.4 | 3394 | 32.4 | 79.5 | 1891 |
50 | 35.5 | 82.6 | 3744 | 32.5 | 78.7 | 1642 |
100 | 33.7 | 82.0 | 4121 | 32.7 | 78.2 | 1739 |
150 | 32.8 | 80.8 | 3917 | 32.5 | 77.8 | 1758 |
200 | 31.9 | 79.9 | 3747 | 32.4 | 77.2 | 1830 |
CV (%) | 5.93 | 2.12 | 14.11 | 4.97 | 0.7 | 9.64 |
Prob. levels | *** | ** | * | ns | *** | ns |
LSD (5%) | 2.10 | 1.78 | 54.42 | ns | 0.57 | ns |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH (cm) | SL (cm) | SS | KNS | PH (cm) | SL (cm) | SS | KNS | |||||||||
G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | |
Control | 77.3 | 89.0 | 6.7 | 5.8 | 17.4 | 16.3 | 41.5 | 39.4 | 42.2 | 48.9 | 5.1 | 5.0 | 14.1 | 14.7 | 20.7 | 21.1 |
50 | 80.4 | 86.9 | 6.4 | 6.3 | 17.5 | 17.1 | 38.8 | 39.2 | 42.5 | 46.5 | 5.4 | 5.1 | 14.4 | 14.2 | 19.0 | 19.1 |
100 | 82.9 | 90.2 | 6.8 | 6.7 | 17.8 | 17.4 | 42.8 | 39.1 | 43.4 | 48.7 | 5.9 | 5.0 | 14.3 | 13.9 | 18.6 | 20.5 |
150 | 82.1 | 87.7 | 7.1 | 5.9 | 18.6 | 16.7 | 43.6 | 38.9 | 44.5 | 52.0 | 5.4 | 5.2 | 14.9 | 14.5 | 15.8 | 19.2 |
200 | 84.2 | 86.3 | 7.0 | 6.5 | 18.3 | 17.7 | 34.6 | 43.5 | 44.4 | 51.0 | 5.6 | 5.2 | 15.0 | 14.5 | 20.4 | 23.0 |
Mean | 81.4 b | 88.0 a | 6.8 a | 6.2 b | 17.9 a | 17.0 b | 40.3 | 40.0 | 43.4 b | 49.4 a | 5.5 | 5.1 | 14.5 | 14.3 | 18.9 b | 20.6 a |
CV (%) | 4.63 | 5.96 | 5 | 10.5 | 3.92 | 10.6 | 4.0 | 17.8 | ||||||||
Prob. levels | ns | ns | ns | ns | ns | ns | ns | ns | ||||||||
LSD(5%) | ns | ns | ns | ns | ns | ns | ns | ns |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TKW (g) | TW (kg) | GY (kg ha−1) | TWK (g) | TW (kg) | GY (kg ha−1) | |||||||
G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | |
Control | 35.2 | 40.2 | 83.3 | 83.5 | 3525 | 3263 | 32.0 | 32.8 | 78.3 | 80.7 | 1929 | 1852 |
50 | 34.1 | 36.9 | 83.2 | 82.0 | 3724 | 3764 | 30.7 | 34.3 | 78.1 | 79.3 | 1537 | 1746 |
100 | 33.4 | 34.1 | 81.5 | 82.5 | 4335 | 3907 | 31.4 | 33.9 | 77.7 | 78.8 | 1711 | 1767 |
150 | 31.1 | 34.6 | 80.0 | 81.6 | 4027 | 3806 | 30.4 | 34.6 | 77.4 | 78.2 | 1624 | 1892 |
200 | 30.9 | 32.8 | 79.7 | 80.1 | 4253 | 3241 | 30.8 | 34 | 76.7 | 77.8 | 1794 | 1865 |
Mean | 32.9 b | 35.7 a | 81.5 | 82.0 | 3972 a | 3596 b | 31.1 b | 34.0 a | 77.6 b | 79.0 a | 1720 | 1825 |
CV (%) | 6.72 | 2.46 | 15.6 | 3.7 | 1.0 | 9.3 | ||||||
Prob. levels | * | ns | ns | ns | ns | ns | ||||||
LSD (5%) | 2.1 | ns | ns | ns | ns | ns |
Rates of Nitrogen. (kg ha−1) | 2016–2017 | 2017–2018 | ||||||
---|---|---|---|---|---|---|---|---|
PC (%) | SC (%) | WG (%) | ZS (mL) | PC (%) | SC (%) | WG (%) | ZS (mL) | |
Control | 13.0 | 63.0 | 28.7 | 43.1 | 16.6 | 60.6 | 40.9 | 59.1 |
50 | 14.0 | 62.7 | 30.5 | 45.8 | 18.0 | 59.3 | 44.8 | 67.5 |
100 | 15.2 | 62.3 | 32.1 | 49.7 | 18.3 | 58.6 | 46.4 | 69.4 |
150 | 16.3 | 62.2 | 33.4 | 50.9 | 18.4 | 58.6 | 46.4 | 69.9 |
200 | 17.1 | 62.0 | 34.1 | 51.2 | 18.7 | 58.3 | 47.1 | 70.8 |
CV (%) | 8.02 | 0.85 | 4.81 | 8.81 | 1.87 | 11.44 | 2.21 | 3.45 |
Prob. levels | *** | *** | *** | ** | *** | *** | *** | *** |
LSD (5%) | 1.25 | 0.32 | 1.58 | 4.38 | 0.35 | 0.69 | 1.03 | 2.40 |
Rates of Nitrogen (kg ha−1) | 2016–2017 | 2017–2018 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC (%) | SC (%) | WG (%) | ZS (mL) | PC (%) | SC (%) | WG (%) | ZS (mL) | |||||||||
G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | G1 | G2 | |
Control | 12.6 | 13.4 | 63.4 | 62.7 | 28.0 | 29.4 | 40.8 | 45.3 | 15.9 | 17.3 | 60.8 | 60.4 | 38.9 | 42.8 | 53.1 | 65.2 |
50 | 13.0 | 15.0 | 63.2 | 62.3 | 29.3 | 31.7 | 41.9 | 49.8 | 16.9 | 19.0 | 60.0 | 58.7 | 41.8 | 47.8 | 61.8 | 73.2 |
100 | 14.0 | 16.4 | 62.9 | 61.7 | 30.4 | 33.7 | 48.2 | 51.2 | 17.3 | 19.3 | 59.2 | 58.0 | 44.6 | 48.3 | 64.8 | 73.9 |
150 | 16.0 | 16.7 | 62.5 | 61.9 | 33.5 | 33.3 | 51.1 | 50.7 | 17.5 | 19.4 | 58.5 | 58.8 | 44.5 | 48.3 | 65.6 | 74.1 |
200 | 16.9 | 17.3 | 62.1 | 61.8 | 4.1 | 34.2 | 51.2 | 51.2 | 17.9 | 19.6 | 58.9 | 57.7 | 45.7 | 48.5 | 67.5 | 74.1 |
Mean | 14.5 | 15.7 | 62.8 a | 62.1 b | 31.1 | 32.5 | 46.6 | 49.6 | 17.1 b | 18.9 a | 59.5 a | 58.7 b | 43.1 b | 47.1 a | 62.6 b | 72.1 a |
CV (%) | 5.5 | 0.04 | 3.65 | 5.69 | 1.7 | 12.4 | 21.0 | 20.1 | ||||||||
Prob. levels | ns | ns | * | * | ns | ns | ns | ns | ||||||||
LSD (5%) | ns | ns | 1.24 | 2.93 | ns | ns | ns | ns |
Parameters | PH | SL | SS | KNS | TWK | TW | GY | PC | SC | WG | ZS |
---|---|---|---|---|---|---|---|---|---|---|---|
SPAD | 0.497 *** | 0.461 *** | 0.486 *** | 0.463 *** | 0.091 | 0.14 | 0.439 *** | −0.179 | 0.354 ** | −0.382 ** | −0.333 ** |
NDVI-H | 0.706 *** | 0.487 *** | 0.647 *** | 0.625 *** | 0.244 ** | 0.386 | 0.442 *** | −0.230 ** | 0.484 *** | −0.514 | −0.405 ** |
NDVI-A | 0.611 *** | 0.538 *** | 0.648 *** | 0.559 *** | 0.058 | 0.207 | 0.313 ** | −0.178 | 0.409 *** | −0.421 | −0.362 |
NDVI-M | 0.137 | 0.033 | −0.095 | 0.067 | 0.390 ** | 0.1 | −0.066 | 0.169 | −0.104 | 0.051 | 0.163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizilgeci, F.; Yildirim, M.; Islam, M.S.; Ratnasekera, D.; Iqbal, M.A.; Sabagh, A.E. Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability 2021, 13, 3725. https://doi.org/10.3390/su13073725
Kizilgeci F, Yildirim M, Islam MS, Ratnasekera D, Iqbal MA, Sabagh AE. Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability. 2021; 13(7):3725. https://doi.org/10.3390/su13073725
Chicago/Turabian StyleKizilgeci, Ferhat, Mehmet Yildirim, Mohammad Sohidul Islam, Disna Ratnasekera, Muhammad Aamir Iqbal, and Ayman EL Sabagh. 2021. "Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions" Sustainability 13, no. 7: 3725. https://doi.org/10.3390/su13073725
APA StyleKizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., & Sabagh, A. E. (2021). Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability, 13(7), 3725. https://doi.org/10.3390/su13073725