Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Tests
2.1.1. Physical Assessment
2.1.2. Chemical Evaluation: pH, Electrical Conductivity, Organic Matter, and Phosphorus
2.2. Greenhouse Test
2.2.1. Design of the Experiment
2.2.2. Test Establishment
2.2.3. Agronomic Evaluation
2.2.4. In Vitro Evaluation of the Growth-Promoting Activity of T. asperellum
- -
- In vitro evaluation of IAA production by T. asperellum
- -
- In vitro phosphate dissolution test
- -
- Evaluation of phosphate dissolution by metabolic extracts of T. asperellum.
2.3. Data Analysis
3. Results
3.1. Evaluation of the Physical and Chemical Properties of Compost and Its Mixtures Used as Substrates
“The controlled process of aerobic and thermophilic biological transformation of biodegradable organic materials that gives rise to the types of fertilizers or organic amendments, whose characteristics are detailed in Groups 2 and 6 of annex I”.
Parameter | Cp | Cu | Cv | Ref. Decree 506/2013 [79] |
---|---|---|---|---|
Group | 6.04 | 6.03 | 6.05 | |
Treatment | Sanitized and stabilized. Obtained by aerobic biological decomposition (including thermophilic phase) under controlled conditions of biodegradable organic materials of annex IV. Collected separately. | Sanitized and stabilized. Obtained by aerobic biological decomposition (including thermophilic phase) exclusively of leaves, cut grass, and plant debris or pruning under controlled conditions. | Stabilized product obtained from organic materials by digestion via worms under controlled conditions. | |
OM (%) | 22.81.4 ± 0.52 | 35.24 ± 2.62 | 79.98 ± 2.25 | 35 |
C/N | 9.05 | 17.69 | 17.56 | <20 |
pH | 6.87 ± 0.15 | 6.5 ± 0.1 | 4.9 ± 0.1 | |
EC (dS m−1) | 6.72 ± 0.35 | 1.7 ± 0.1 | 3.8 ± 0.1 | |
Improper | Exempt | Exempt | Exempt | <2.5 stones <1.5% metals, glass, plastics |
N (%) | 1.4 ± 0.2 | 0.5 ± 0.01 3 | 2.53 ± 1.1 | 1 1 |
P2O5 (%) | 10.23 ± 0.34 | 4.26 ± 0.44 | 6.09 ± 0.27 | 1 1 |
Bd (t m−1) | 0.7 ± 0.1 | 0.35 ± 0.02 | 0.2 ± 0.1 | 1 1 |
Granulometry (mm) | <4.8 | <4.8 | <4.8 | 400–700 |
Phytotoxicity 2 (%) | 140 | 154 | 124 | >90 |
3.2. Effects of the Properties of the Compost Mixtures and Inoculated with Trichoderma on the Biometric Variables of Maria Bonita Variety Potato Plants Generated In Vitro in the Greenhouse
Relationships between Physical and Chemical Properties Measured for the Mixtures Used as Substrates and Biometric Variables
3.3. Phosphorus-Dissolving Activity and In Vitro IAA Production of T. asperellum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Portier, Charlotte, James Gomme, y Nessa Whelan. 2019. ⟪La Guía Para la Acción Empresarial en los ODS⟫. SDG Compass. GRI, UN Global Compact, and WBCSD. Available online: https://sdgcompass.org/ (accessed on 1 February 2024).
- Rodés, R.; Robaina, G.; Puebla, H. Eficiencia en el uso del agua de riego en el cultivo de la papa (Solanum tuberosum L.) en el occidente de Cuba. Rev. Ing. Agrícola 2013, 3, 3–7. [Google Scholar]
- Doorenbos, J.; Kassam, A. Yield Response to Water; Food and Agriculture Organization of United Nations: Rome, Italy, 1979; ISBN 92-5-100744-6. [Google Scholar]
- Zambrano, L.; Sosa, S. Evolución deI Consumo de Alimentos en Venezuela (1988–2017); D-Universidad Católica Andrés Bello: Caracas, Venezuela, 2017. [Google Scholar]
- FAO. Agricultural Production Statistics 2000–2021; FAO: Roma, Italy, 2022. [Google Scholar]
- Montesdeoca, F. Guía para la producción, comercialización y uso de semilla de papa de calidad. PNTR-INIAP-Proy. Fortipapa 2005, 1, 40. [Google Scholar]
- ProChile Perfil del Mercado Semillas de Papa-Venezuela. Available online: http://www.exportapymes.com/documentos/productos/Pe1417_venezuela_papa_semillas.pdf (accessed on 15 October 2021).
- Romero, L.; Monasterio, M. Semilla, actores e incertidumbres en la producción papera de Los Andes de Mérida. Realidades y escenarios bajo el contexto político vigente. Cayapa. Rev. Venez. Econ. Soc. 2005, 5, 35–56. [Google Scholar]
- Ezeta, F.N. Producción de Semilla de Papa en Latinoamérica. Rev. Latinoam. Papa 2001, 12, 1–14. [Google Scholar] [CrossRef]
- FAO. Proceedings of the Global Symposium on Soil Organic Carbon 2017; FAO: Roma, Italy, 2017; ISBN 9789251098387. [Google Scholar]
- Kaza, S.; Lisa, Y.; Bhada-Tata, P.; Frank, V.W. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018; Volume 148, ISBN 9781464813290. [Google Scholar]
- Zhang, F.; Huo, Y.; Cobb, A.B.; Luo, G.; Zhou, J.; Yang, G.; Wilson, G.W.T.; Zhang, Y. Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Front. Microbiol. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed]
- Montesano, F.F.; Gattullo, C.E.; Parente, A.; Terzano, R.; Renna, M. Cultivation of potted sea fennel, an emerging mediterranean halophyte, using a renewable seaweed-based material as a peat substitute. Agriculture 2018, 8, 96. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Coir fiber and bamboo vinegar improve the quality of composted green waste as a growing medium for peacock arrowroot. Horttechnology 2017, 27, 325–336. [Google Scholar] [CrossRef]
- Gong, X.; Li, S.; Sun, X.; Wang, L.; Cai, L.; Zhang, J.; Wei, L. Green waste compost and vermicompost as peat substitutes in growing media for geranium (Pelargonium zonale L.) and calendula (Calendula officinalis L.). Sci. Hortic. 2018, 236, 186–191. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Debode, J.; Willekens, K.; Van Delm, T. Recycling of P and K in circular horticulture through compost application in sustainable growing media for fertigated strawberry cultivation. Eur. J. Agron. 2018, 96, 131–145. [Google Scholar] [CrossRef]
- Edwards, C.A.; Domínguez, J.; Arancon, N.Q. The influence of vermicomposts on plant growth and pest incidence. In Soil Zoology for Sustainable Development in the 21st Century; Hanna, S., Mikhaïl, W.Z.A., Eds.; Self-Publisher: Cairo, Egypt, 2004; pp. 397–420. [Google Scholar]
- Valdez-Pérez, M.A.; Fernández-Luqueño, F.; Franco-Hernandez, O.; Flores Cotera, L.B.; Dendooven, L. Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Sci. Hort. 2011, 128, 380–387. [Google Scholar] [CrossRef]
- Truong, H.D.; Wang, C.H. Effects of continuously applied vermicompost on media properties, growth, yield, and fruit quality of two tomato varieties. Commun. Soil Sci. Plant Anal. 2017, 48, 370–382. [Google Scholar] [CrossRef]
- Tejada, M.; González, J.L. Application of two vermicomposts on a rice crop: Effects on soil biological properties and rice quality and yield. Agron. J. 2009, 101, 336–344. [Google Scholar] [CrossRef]
- Khosravi Shakib, A.; Rezaei Nejad, A.; Khandan Mirkohi, A.; Kalate Jari, S. Vermicompost and Manure Compost Reduce Water-Deficit Stress in Pot Marigold (Calendula officinalis L. cv. Candyman Orange). Compost Sci. Util. 2019, 27, 61–68. [Google Scholar] [CrossRef]
- Zaller, J.G. Foliar Spraying of Vermicornpost Extracts: Effects on Fruit Quality and Indications of Late-Blight Suppression of Field-Grown Tomatoes. Biol. Agric. Hortic. 2006, 24, 165–180. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell. Fact. 2014, 13, 66. [Google Scholar] [CrossRef]
- Shashikala, M.; Wati, L. Biofertilizers: Potential Candidate for Sustainable Agriculture. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 2839–2851. [Google Scholar]
- He, J.; Zhu, N.; Xu, Y.; Wang, L.; Zheng, J.; Li, X. The microbial mechanisms of enhanced humification by inoculation with Phanerochaete chrysosporium and Trichoderma longibrachiatum during biogas residues composting. Bioresour. Technol. 2022, 351, 126973. [Google Scholar] [CrossRef] [PubMed]
- Bibi, H.; Ur Rahim, H.; Anwar Khan, A.; Haris, M.; Iqbal, M.; Ali, R.; El-Sheikh, M.A.; Kaushik, P. Harmonized tripartite Approach: Enhancing nutrient Accessibility, Uptake, and wheat productivity through Trichoderma harzianum, Compost, and phosphorus synergy. J. King Saud Univ.-Sci. 2024, 36, 103106. [Google Scholar] [CrossRef]
- Moreira, F.M.; Cairo, P.A.R.; Borges, A.L.; Silva, L.D.d.; Haddad, F. Investigating the ideal mixture of soil and organic compound with Bacillus sp. and Trichoderma asperellum inoculations for optimal growth and nutrient content of banana seedlings. S. Afr. J. Bot. 2021, 137, 249–256. [Google Scholar] [CrossRef]
- Cai, F.; Chen, W.; Wei, Z.; Pang, G.; Li, R.; Ran, W.; Shen, Q. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 2015, 388, 337–350. [Google Scholar] [CrossRef]
- Alves, G.S.; Bertini, S.C.B.; Barbosa, B.B.; Pimentel, J.P.; Ribeiro Junior, V.A.; Mendes, G.d.O.; Azevedo, L.C.B. Fungal endophytes inoculation improves soil nutrient availability, arbuscular mycorrhizal colonization and common bean growth. Rhizosphere 2021, 18, 100330. [Google Scholar] [CrossRef]
- Li, Y.T.; Hwang, S.G.; Huang, Y.M.; Huang, C.H. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot. 2018, 110, 275–282. [Google Scholar] [CrossRef]
- Wonglom, P.; Ito, S.-i.; Sunpapao, A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Ros, M.; Raut, I.; Santisima-Trinidad, A.B.A.B.; Pascual, J.A.J.A. Relationship of microbial communities and suppressiveness of Trichoderma fortified composts for pepper seedlings infected by Phytophthora nicotianae. PLoS ONE 2017, 12, e0174069. [Google Scholar] [CrossRef]
- Ros, M.; Pascual, J.A.; Ayuso, M.; Belén Morales, A.; Ramón Miralles, J.; Solera, C. Salidas valorizables de los residuos y subproductos orgánicos de la industria de los transformados de frutas y hortalizas. Residuos 2012, 130, 2–9. [Google Scholar]
- Pascale, A.; Vinale, F.; Manganiello, G.; Nigro, M.; Lanzuise, S.; Ruocco, M.; Marra, R.; Lombardi, N.; Woo, S.L.; Lorito, M. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 2017, 92, 176–181. [Google Scholar] [CrossRef]
- Korolev, N.; Rav David, D.; Elad, Y. The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 2008, 53, 667–683. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.Q. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. Integr. Agric. 2015, 14, 1588–1597. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; LIiu, W.; Zhang, D.; Dong, D.; Wu, H.; Zhang, T.; Liu, D. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants. J. Integr. Agric. 2021, 20, 1266–1276. [Google Scholar] [CrossRef]
- Lehner, S.M.; Atanasova, L.; Neumann, N.K.N.; Krska, R.; Lemmens, M.; Druzhinina, I.S.; Schuhmacher, R. Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl. Environ. Microbiol. 2013, 79, 18–31. [Google Scholar] [CrossRef]
- Díaz-Gutiérrez, C.; Arroyave, C.; Llugany, M.; Poschenrieder, C.; Martos, S.; Peláez, C. Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol. Control 2021, 155, 104537. [Google Scholar] [CrossRef]
- de Azevedo Silva, F.; de Oliveira Vieira, V.; Correia da Silva, R.; Guariz Pinheiro, D.; Antônio Soares, M. Introduction of Trichoderma spp. biocontrol strains against Sclerotinia sclerotiorum (Lib.) de Bary change soil microbial community composition in common bean (Phaseolus vulgaris L.) cultivation. Biol. Control 2021, 163, 104755. [Google Scholar] [CrossRef]
- Pandin, C.; Védie, R.; Rousseau, T.; Le Coq, D.; Aymerich, S.; Briandet, R. Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST713 as biocontrol agent against Trichoderma aggressivum. Biol. Control 2018, 127, 39–54. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Ros, M.; Hurtado-Navarro, M.; Giménez, A.; Fernández, J.A.; Egea-Gilabert, C.; Lozano-Pastor, P.; Pascual, J.A. Spraying agro-industrial compost tea on baby spinach crops: Evaluation of yield, plant quality and soil health in field experiments. Agronomy 2020, 10, 440. [Google Scholar] [CrossRef]
- Gilardi, G.; Pugliese, M.; Gullino, M.L.; Garibaldi, A. Nursery treatments with resistant inducers, soil amendments and biocontrol agents for the management of the Fusarium wilt of lettuce under glasshouse and field conditions. J. Phytopathol. 2019, 167, 98–110. [Google Scholar] [CrossRef]
- Mijwel, A.K. Organic and bio-fertilizers and their effect in some soil and plant variables and potato yield. Plant Arch. 2018, 18, 2340–2344. [Google Scholar]
- El-Sayed, S.F.; Hassan, H.A.; El-Mogy, M.M. Impact of Bio- and Organic Fertilizers on Potato Yield, Quality and Tuber Weight Loss After Harvest. Potato Res. 2015, 58, 67–81. [Google Scholar] [CrossRef]
- Haddadin, M.S.Y.; Haddadin, J.; Arabiyat, O.I.; Hattar, B. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour. Technol. 2009, 100, 4773–4782. [Google Scholar] [CrossRef]
- Coelho, L.; Reis, M.; Guerrero, C.; Dionísio, L. Biological control of turfgrass diseases with organic composts enriched with Trichoderma atroviride. Biol. Control 2021, 159, 104620. [Google Scholar] [CrossRef]
- Lasmini, S.A.; Edy, N.; Yunus, M.; Haji Nasir, B.; Khasanah, N.; Lasmini, S.A.; Edy, N.; Yunus, M.; Nasir, B.H.; Khasanah, N. Effect of the combined application off manure compost and Trichoderma sp. on production parameters and stem rot disease incidence of shallot. Chil. J. Agric. Anim. Sci. 2022, 38, 335–344. [Google Scholar] [CrossRef]
- Rosmana, A.; Sakrabani, R.; Sjam, S.; Nasaruddin, N.; Asman, A.; Pandin, B.Y.S. Plant residue based-composts applied in combination with Trichoderma asperellum improve cacao seedling growth in soil derived from nickel mine area. J. Anim. Plant Sci. 2019, 29, 291–298. [Google Scholar]
- Mijwel, A.K.; Abed Al-Redha, A.; Bresim, T.H. Response of some traits of potato (Solanum tuberosum L.) to the addition of the ground palm remnants compost and foliar with humic acid. Plant Arch. 2019, 19, 94–97. [Google Scholar]
- Sánchez-Montesinos, B.; Diánez, F.; Moreno-Gavíra, A.; Gea, F.J.; Santos, M. Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy 2020, 10, 1004. [Google Scholar] [CrossRef]
- Peña, H.; Arias, K.; Santos, M.; Sulbaran, J.; Ramírez, B. Evaluación de la calidad química, física y biológica de tres compost producidos a partir de residuos agroindustriales. Rev. Cient. UNET 2019, 867, 144–153. [Google Scholar]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center; IICA: San José, Costa Rica, 1967. [Google Scholar]
- Peña, H.; Mendoza, H.; Dianez, F.; Santos, M. Compost quality analysis. Agronomy 2020, 10, 1567. [Google Scholar] [CrossRef]
- Richards, T. Compost Mixture Calculation Spreadsheets; Cornell Composting Science & Engineering: Ithaca, NY, USA, 2014; Available online: http://compost.css.cornell.edu/download.html (accessed on 6 May 2024).
- Parlamento Europeo y del Consejo. Decisión de la Comisión 2014/955/UE de 18 de Diciembre de 2014 por la Que se Modifica la Decisión 2000/532/CE, Sobre la Lista de Residuos, de Conformidad con la Directiva 2008/98/CE del Parlamento Europeo y del Consejo. Off. J. Eur. Union 2014, 7, 44–86. [Google Scholar]
- Martínez-Alemán, S.; Hernández-Castillo, F.; Aguilar-González, C.; Rodríguez-Herrera, R. Extractos de pulpa de café: Una revisión sobre antioxidantes polifenólicos y su actividad antimicrobiana. Investig. Y Cienc. 2019, 27, 73–79. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M. Métodos de análisis de compost. NCh 2880, Métodos TMECC 04.11: Determinación electrométrica de pH y TMECC 04.10: Conductividad eléctrica para compost. Ser. Actas INIA 2005, 30. [Google Scholar]
- Pire, R.; Pereira, A. Propiedades físicas de componentes de sustratos de uso común en la horticultura del Estado Lara, Venexuela: Propuesta metodológica. Bioagro 2003, 15, 55–64. [Google Scholar]
- TMECCa. Field sampling of compost materials. In Test Methods for the Examination of Composting and Compost; Thompson, W., Ed.; The Composting Council Research and Education Foundation and Agriculture: Bethesda, MD, USA, 2002; p. 26. [Google Scholar]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Ministerio del Ambiente. Identificación de las Alternativas a los Cultivares Mercado a Partir de los Recursos Genéticos Nativos y Naturalizados-ley 29811; Ministerio del Ambiente: Lima, Peru, 2018. [Google Scholar]
- González, L.; Vargas, A.; Niño, L. Mejoramiento genético de la papa (Solanum tuberosum L.) en Venezuela. Rev. Latinoam. Papa 2017, 21, 121–127. [Google Scholar] [CrossRef]
- PROINPA Escalamiento industrial Red Socialista de Innovación Productiva de Papa del Municipio Rangel (Proinpa). Available online: http://proinpameridavenezuela.blogspot.com/2014/02/escalamiento-industrial-red-socialista.html (accessed on 15 October 2021).
- Meza, N.; Daboín, B. Fitomejoramiento en el cultivo papa. In Producción de Semillas en Venezuela; Hernán, E., Laurentín, T., Eds.; Ediciones Astro Data S.A.: Caracas, Venezuela, 2020; ISBN 9783000475993. [Google Scholar]
- Diánez Martínez, F.; Santos, M.; Carretero, F.; Marín, F. Trichoderma saturnisporum, a new biological control agent. J. Sci. Food Agric. 2016, 96, 1934–1944. [Google Scholar] [CrossRef] [PubMed]
- Gravel, V.; Antoun, H.; Tweddell, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 2007, 39, 1968–1977. [Google Scholar] [CrossRef]
- Glickmann, E.; Dessaux, Y. A Critical Examination of the Specificity of the Salkowski. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef]
- Kapri, A.; Tewari, L. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz. J. Microbiol. 2010, 41, 787–795. [Google Scholar] [CrossRef]
- Reyes, I.; Bernier, L.; Simard, R.; Tanguay, P.; Antoun, H. Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. Ecol. 1999, 28, 291–295. [Google Scholar] [CrossRef]
- Mateus-Rodriguez, J.R.; de Haan, S.; Andrade-Piedra, J.L.; Maldonado, L.; Hareau, G.; Barker, I.; Chuquillanqui, C.; Otazú, V.; Frisancho, R.; Bastos, C.; et al. Technical and Economic Analysis of Aeroponics and other Systems for Potato Mini-Tuber Production in Latin America. Am. J. Potato Res. 2013, 90, 357–368. [Google Scholar] [CrossRef]
- El-Hasan, A.; Schöne, J.; Höglinger, B.; Walker, F.; Voegele, R.T. Assessment of the antifungal activity of selected biocontrol agents and their secondary metabolites against Fusarium graminearum. Eur. J. Plant Pathol. 2018, 150, 91–103. [Google Scholar] [CrossRef]
- El kinany, S.; Achbani, E.h.; Haggoud, A.; Ibijbijen, J.; Belmalha, S.; Rachidi, F.; Echchgadda, G.; Bouamri, R. In vitro evaluation of compost extracts efficiency as biocontrol agent of date palm Fusarium wilt. Afr. J. Microbiol. Res. 2017, 11, 1155–1161. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Balzarini, M.; Casanoves, F.; Gonzalez, L.; Tablada, E. InfoStat 2021, 336. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2116268 (accessed on 1 February 2024).
- Parlamento Europeo y el Consejo de la Unión Europea. Reglamento (UE) 2019/1009 del Parlamento Europeo y del Consejo de 5 de junio de 2019 por el que se Establecen Disposiciones Relativas a la Puesta a Disposición en el Mercado de los Productos Fertilizantes UE; Parlamento Europeo y el Consejo de la Unión Europea: Brussels, Belgium, 2019; Volume 170, pp. 1–114. [Google Scholar]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Gobierno de España. Real Decreto 506/2013; 2013; Volume 164, pp. 5119–51207. Available online: https://www.boe.es/eli/es/rd/2013/06/28/506/con (accessed on 1 February 2024).
- Villalba, L.; Paolini, J.; Rocha, C. Some biological parameters in the evaluation of the stability and maturity of two compost. Rev. Fac. Agron. 2021, 38, 06–30. [Google Scholar] [CrossRef]
- Haug, R.T. Process kinetics and product stability. In The Practical Handbook of Compost Engineering; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 335–384. ISBN 0250403471. [Google Scholar]
- European Compost Network. European Quality Assurance Scheme for Compost and Digestate; European Compost Network: Bochum, Germany, 2018; ISBN 9783000475993. [Google Scholar]
- Calori, A.H.; Factor, T.L.; Feltran, J.C.; Watanabe, E.Y.; Moraes, C.C.d.; Purquerio, L.F.V. Seed potato minituber production in an aeroponic system under tropical conditions: Electrical conductivity and plant density. J. Plant Nutr. 2018, 41, 2200–2209. [Google Scholar] [CrossRef]
- Kamrani, M.; Chegeni, A.; Hosseinniya, H. Effects of Different Growing Media on Yield and Growth Parameters of Potato Minitubers (Solanum tuberosum L.). Commun. Soil Sci. Plant Anal. 2019, 50, 1838–1853. [Google Scholar] [CrossRef]
- Hennouni, N.; Madi, K.; Taibi, F.; Kestali, T.; Etsouri, S.; Boudelaa, M. Influence of several substrates on growth parameters and yield of potato minitubers (Solanum tuberusum). Adv. Environ. Biol. 2016, 10, 90–98. [Google Scholar]
- Tican, A. Experimenting hydroponic culture systems on different substrates to obtain potato minitubers. Rom. Agric. Res. 2017, 35, 147–153. [Google Scholar] [CrossRef]
- Benito, M.; Masaguer, A.; Moliner, A.; Arrigo, N.; Palma, R.M. Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biol Fertil Soils 2003, 37, 184–189. [Google Scholar] [CrossRef]
- Masaguer, A.; López-cuadrado, M.C. Sustratos para viveros. Viveros/Extra 2006, 8, 44–50. [Google Scholar]
- Wilson, C.; Zebarth, B.J.; Burton, D.L.; Goyer, C.; Moreau, G.; Dixon, T. Effect of Diverse Compost Products on Potato Yield and Nutrient Availability. Am. J. Potato Res. 2019, 96, 272–284. [Google Scholar] [CrossRef]
- Siebert, S.; Gilbert, J. Guidelines: Specification for the Use of Quality Compost in Growing Media; European Quality Assurance Scheme ECNQAS; European Compost Network ECN: Adelaide, Australia, 2018. [Google Scholar]
- Monsalve, O.; Henao, M.; Gutiérrez, J. Caracterización de materiales con uso potencial como sustratos en sistemas de cultivo sin suelo. Cienc. Tecnol. Agropecu. 2021, 22, 1–23. [Google Scholar] [CrossRef]
- Agramonte, D.; Perez, M.; León, M.; Rodríguez, M.; Feria, M. De Producción de minitubérculos de papa var. ‘Desirée’ en casa de cultivo con sustrato zeolita a partir de plantas cultivadas in vitro. Direct 2010, 10, 219–228. [Google Scholar]
Treatment | Height (cm) | Stem Diameter (mm) | Minitubers/ Tray | Minitubers/ m2 | Minitubers Weight (g) | Group |
---|---|---|---|---|---|---|
Cp50A | 15.96 ± 2.21 | 3.57 ± 0.48 | 17 ± 2.83 | 568.56 | 12.9 ± 1.11 | a |
Cp50P | 16.89 ± 1.94 | 5.09 ± 0.46 | 14 ± 6.58 | 468.23 | 13.77 ± 1.36 | b |
Cv50P | 16.7 ± 1.38 | 5.02 ± 0.29 | 12.75 ± 4.79 | 426.42 | 11.45 ± 1.59 | bd |
Cp25P | 12.62 ± 2.13 | 4.86 ± 0.64 | 13 ± 3.83 | 434.78 | 12.71 ± 1.23 | bd |
Cp75P | 25.88 ± 2.75 | 4.49 ± 0.7 | 15 ± 0 | 501.67 | 12.57 ± 0 | c |
Cu50A | 12.41 ± 2.88 | 3.93 ± 0.25 | 11.5 ± 2.65 | 384.62 | 11.56 ± 1.45 | d |
Cu75A | 13.47 ± 1.92 | 4.46 ± 0.15 | 16.25 ± 0.96 | 543.48 | 10.37 ± 1.29 | dej |
Cu100P | 15.64 ± 2.97 | 4.18 ± 0.35 | 14.25 ± 2.99 | 476.59 | 9.52 ± 1.16 | e |
Cu100A | 13.51 ± 1.09 | 4.1 ± 0.37 | 16.25 ± 4.5 | 543.48 | 8.5 ± 0.94 | ehj |
Cp25A | 11.79 ± 0.95 | 4.26 ± 0.15 | 13.75 ± 5.68 | 459.87 | 8.05 ± 1.32 | ej |
Cu50P | 14.76 ± 1.88 | 4 ± 0.58 | 13.5 ± 2.38 | 451.51 | 8.93 ± 1.26 | ej |
Cv50A | 23.15 ± 1.75 | 4.33 ± 0.53 | 12.75 ± 3.86 | 426.42 | 10.07 ± 0.98 | f |
Cv75P | 23.88 ± 2.39 | 5.59 ± 0.2 | 11.5 ± 4.51 | 384.62 | 6.02 ± 0.75 | g |
Cv25A | 14.69 ± 1.65 | 4.95 ± 0.37 | 14 ± 7.35 | 468.23 | 9.68 ± 1.5 | h |
Cv25P | 11.53 ± 2.11 | 4.52 ± 0.22 | 15.75 ± 3.77 | 526.76 | 8.05 ± 0.57 | h |
Cp100P | 15.97 ± 0.26 | 3.85 ± 0.5 | 8 ± 1.63 | 267.56 | 10.22 ± 0.79 | i |
Cp75A | 14.1 ± 0.9 | 2.99 ± 0.64 | 6 ± 0 | 200.67 | 9.49 ± 0 | i |
Cu75P | 9.75 ± 1.99 | 3.9 ± 0.59 | 12.75 ± 1.89 | 426.42 | 9.57 ± 0.76 | j |
Cu25P | 3.52 ± 0.83 | 2.43 ± 0.21 | 7.25 ± 1.71 | 242.47 | 5.96 ± 1.96 | k |
Cp100A | 13.75 ± 1.9 | 0.35 ± 0.2 | 6.75 ± 1.26 | 225.75 | 7.28 ± 0.03 | l |
Cu25A | 9.74 ± 0.3 | 2.38 ± 0.27 | 6 ± 2.45 | 200.67 | 6.83 ± 1.38 | m |
Cv75A | 0 ± 0 | 0 ± 0 | 16 ± 3.37 | 535.12 | 4.3 ± 0.54 | n |
Cv100A | 0 ± 0 | 0 ± 0 | 11 ± 4.97 | 367.89 | 3.84 ± 1.02 | n |
Cv100P | 0 ± 0 | 0 ± 0 | 9 ± 1.63 | 301 | 3.72 ± 0.83 | n |
Fc100A | 0 | 0 | 5.75 ± 3.77 | 192.31 | 0.79 ± 0.22 | o |
Fc100p | 0 | 0 | 0 ± 0 | 0 | 0 ± 0 | o |
Treatment | +Trp | −Trp | P (ppm) * | ΔpH | Halo ** (300) | Halo (200) | Halo (100) |
---|---|---|---|---|---|---|---|
p-value | 0.0171 | 0.0118 | 0.0097 | 0.0001 | 0.05 | 0.05 | 0.05 |
T. asperellum | 11.95 ± 2.75 | 4.19 ± 0.80 | 0.78 ± 0.12 b | 1.23 ± 0.15 b | 12.25± 2.99 a | 10.25 ± 1.50 b | 5.75 ± 0.50 c |
P. rugulosum | nd | nd | 1.41± 0.32 a | 2.88 ± 0.13 a | 13.75 ± 1.41 a | 9.25 ± 0.96 b | 5.75 ± 1.26 c |
Bd | EC | OM | pH | P | |
---|---|---|---|---|---|
a_sup | 0.18–0.35 | 0.21–0.31 | 35.24–53.48 | 7.38–7.58 | 1.86–3.77 |
a_prod | 0.17–0.65 | 0.21–4.57 | 22.81–84.2 | 7.35–8.45 | 1.86–4.29 |
b_sup | 0.13–0.34 | 0.85–1.55 | 32.52–79.98 | 7.35–8.45 | 1.84–4.29 |
b_prod | 0.17–0.19 | 1.84–2.93 | 79.98–82.95 | 6.05–6.38 | 2.33–2.66 |
c_sup | 0.50–0.65 | 3.49–4.57 | 22.81–26.33 | 7.03–7.23 | 4.17–4.47 |
c_prod | 0.20 | 0.65 | 85.14 | 6.78 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, H.; Santos, M.; Ramírez, B.; Sulbarán, J.; Arias, K.; Huertas, V.; Diánez, F. Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds. Sustainability 2024, 16, 8552. https://doi.org/10.3390/su16198552
Peña H, Santos M, Ramírez B, Sulbarán J, Arias K, Huertas V, Diánez F. Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds. Sustainability. 2024; 16(19):8552. https://doi.org/10.3390/su16198552
Chicago/Turabian StylePeña, Haydee, Mila Santos, Beatriz Ramírez, José Sulbarán, Karen Arias, Victoria Huertas, and Fernando Diánez. 2024. "Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds" Sustainability 16, no. 19: 8552. https://doi.org/10.3390/su16198552
APA StylePeña, H., Santos, M., Ramírez, B., Sulbarán, J., Arias, K., Huertas, V., & Diánez, F. (2024). Essential Quality Attributes of Culture Media Used as Substrates in the Sustainable Production of Pre-Basic Potato Seeds. Sustainability, 16(19), 8552. https://doi.org/10.3390/su16198552