Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Data Collection
2.2. LULC Classification
2.2.1. Object-Oriented Classification
2.2.2. Accuracy Assessment
2.3. Carbon Sequestration and Oxygen Emission Modeling of Urban Ecosystems
2.3.1. Urban Carbon Sequestration Model
Parameters | Value | Source |
---|---|---|
CNPPi from LULC of forest | 37.05 t/(ha·a) | [29] |
CERi from LULC of forest | 6.47 t/(ha·a) | [87] |
CNPPi from LULC of arable | 17.97 t/(ha·a) | [87] |
CERi from LULC of arable | 3.56 t/(ha·a) | [91] |
CNPPi from LULC of grass | 16.32 t/(ha·a) | [29] |
CERi from LULC of grass | 5.67 t/(ha·a) | [87] |
CNPPi from LULC of water | 0.57 t/(ha·a) | [25] |
OEi from LULC of forest | 27.28 t/(ha·a) | [29] |
OERi from LULC of forest | 4.71 t/(ha·a) | [92] |
OEi from LULC of arable | 11.20 t/(ha·a) | [87] |
OERi from LULC of arable | 3.96 t/(ha·a) | [92] |
OEi from LULC of grass | 11.84 t/(ha·a) | [87] |
OERi from LULC of grass | 4.12 t/(ha·a) | [92] |
OEi from LULC of water | 1.51 t/(ha·a) | [25] |
2.3.2. Urban Oxygen Emission Model
2.4. Carbon Emissions and Oxygen Consumption Modeling of Urban Ecosystems
2.4.1. Urban Carbon Emission Model
- CHR = R_carbon × p × 365 × 10−3
- CIF = E_industrial × fcoal
- CTF = Car_number × distance × g× fgasoline × 365 × 10−6
- CDE = E_domestic × felectricity × fcoal × 10−3
- CSW = W_solid × RDOC × fDOC,
Parameters | Value | Source |
---|---|---|
R_carbon | 0.90 kg/(person·day) | [96] |
fcoal | 0.9769 | [81] |
g | 0.265 L/km | [93] |
fgasoline | 65.8 g/L | [93] |
felectricity | 0.404 kg standard coal/kWh | [89] |
RDOC | 14% | [94] |
fDOC | 50% | [94] |
R_oxygen | 0.75 kg/(person·day) | [96] |
R2O/C | 2.67 | [89] |
2.4.2. Urban Oxygen Consumption Model
- OHR = R_oxygen × p × 365 × 10−3
- OIF = E_industrial × fcoal × R2O/C
- OTF = Car_number × distance × g × fgasoline × 365 × 10−6 × R2O/C
- ODE = E_domestic × felectricity × fcoal × 10−3 × R2O/C
- OSW = W_solid × RDOC × fDOC × R2O/C,
2.5. Evaluation of the Carbon and Oxygen Balances of Urban Ecosystems
3. Results and Discussion
3.1. LULC Classification in Beijing
FL | GL | WB | AL | BU | BL | |
---|---|---|---|---|---|---|
Area (km2) | 8468.43 | 867.40 | 267.21 | 4128.48 | 2589.20 | 71.99 |
Area (%) | 51.66% | 5.29% | 1.63% | 25.18% | 15.79% | 0.44% |
PA | 90.00% | 79.31% | 95.45% | 44.44% | 83.54% | 72.73% |
UA | 74.67% | 74.19% | 100.00% | 72.73% | 90.73% | 72.73% |
3.2. Spatial Pattern of Carbon Sequestration and Oxygen Emissions from Different LULC Types
Districts | Arable Land | Forest Land | Grassland | Water Body | Total | |
---|---|---|---|---|---|---|
Carbon sequestration | Changping | 4.53 × 105 | 2.26 × 106 | 2.98 × 104 | 9.01 × 102 | 2.74 × 106 |
Chaoyang | 3.97 × 104 | 1.36 × 105 | 4.97 × 104 | 4.92 × 102 | 2.26 × 105 | |
Daxing | 8.98 × 105 | 1.12 × 105 | 3.97 × 104 | 3.19 × 102 | 1.05 × 106 | |
Dongcheng | 7.21 × 103 | 2.73 × 103 | 5.85 × 101 | 1.00 × 104 | ||
Fangshan | 7.12 × 105 | 3.51 × 106 | 9.83 × 104 | 9.74 × 102 | 4.32 × 106 | |
Fengtai | 7.22 × 104 | 5.26 × 104 | 3.22 × 104 | 4.63 × 101 | 1.57 × 105 | |
Haidian | 1.14 × 105 | 3.11 × 105 | 3.82 × 104 | 5.54 × 102 | 4.63 × 105 | |
Huairou | 2.69 × 105 | 4.94 × 106 | 2.37 × 105 | 7.94 × 102 | 5.45 × 106 | |
Mentougou | 1.02 × 105 | 3.92 × 106 | 7.88 × 103 | 2.72 × 102 | 4.03 × 106 | |
Miyun | 7.28 × 105 | 4.16 × 106 | 1.65 × 105 | 5.35 × 103 | 5.06 × 106 | |
Pinggu | 2.58 × 105 | 1.94 × 106 | 1.97 × 104 | 1.01 × 103 | 2.21 × 106 | |
Shijingshan | 5.96 × 103 | 7.49 × 104 | 6.52 × 103 | 7.05 × 101 | 8.75 × 104 | |
Shunyi | 7.73 × 105 | 5.31 × 105 | 4.29 × 104 | 8.72 × 102 | 1.35 × 106 | |
Tongzhong | 7.92 × 105 | 1.01 × 105 | 1.63 × 104 | 1.69 × 103 | 9.11 × 105 | |
Xicheng | 2.43 × 103 | 2.22 × 103 | 9.40 × 101 | 4.74 × 103 | ||
Yanqing | 7.34 × 105 | 3.85 × 106 | 1.30 × 105 | 1.62 × 103 | 4.72 × 106 | |
Beijing | 5.95 × 106 | 2.59 × 107 | 9.18 × 105 | 1.51 × 104 | 3.28 × 107 | |
Oxygen emissions | Changping | 2.28 × 105 | 1.67 × 106 | 2.16 × 104 | 2.39 × 103 | 1.92 × 106 |
Chaoyang | 1.99 × 104 | 1.00 × 105 | 3.60 × 104 | 1.31 × 103 | 1.58 × 105 | |
Daxing | 4.51 × 105 | 8.29 × 104 | 2.88 × 104 | 8.44 × 102 | 5.64 × 105 | |
Dongcheng | 5.32 × 103 | 1.98 × 103 | 1.55 × 102 | 7.46 × 103 | ||
Fangshan | 3.58 × 105 | 2.59 × 106 | 7.12 × 104 | 2.58 × 103 | 3.02 × 106 | |
Fengtai | 3.63 × 104 | 3.88 × 104 | 2.33 × 104 | 1.23 × 102 | 9.86 × 104 | |
Haidian | 5.71 × 104 | 2.30 × 105 | 2.77 × 104 | 1.47 × 103 | 3.16 × 105 | |
Huairou | 1.35 × 105 | 3.65 × 106 | 1.72 × 105 | 2.10 × 103 | 3.96 × 106 | |
Mentougou | 5.14 × 104 | 2.89 × 106 | 5.71 × 103 | 7.21 × 102 | 2.95 × 106 | |
Miyun | 3.66 × 105 | 3.07 × 106 | 1.20 × 105 | 1.42 × 104 | 3.57 × 106 | |
Pinggu | 1.30 × 105 | 1.43 × 106 | 1.43 × 104 | 2.68 × 103 | 1.58 × 106 | |
Shijingshan | 3.00 × 103 | 5.53 × 104 | 4.73 × 103 | 1.87 × 102 | 6.32 × 104 | |
Shunyi | 3.88 × 105 | 3.92 × 105 | 3.11 × 104 | 2.31 × 103 | 8.13 × 105 | |
Tongzhong | 3.98 × 105 | 7.44 × 104 | 1.18 × 104 | 4.49 × 103 | 4.89 × 105 | |
Xicheng | 1.80 × 103 | 1.61 × 103 | 2.49 × 102 | 3.65 × 103 | ||
Yanqing | 3.69 × 105 | 2.84 × 106 | 9.42 × 104 | 4.30 × 103 | 3.31 × 106 | |
Beijing | 2.99 × 106 | 1.91 × 107 | 6.66 × 105 | 4.01 × 104 | 2.28 × 107 |
District | CS-AL | CS-FL | CS-GL | CS-WB |
---|---|---|---|---|
Changping | 16.52% | 82.36% | 1.09% | 0.03% |
Chaoyang | 17.57% | 60.21% | 22.00% | 0.22% |
Daxing | 85.50% | 10.69% | 3.78% | 0.03% |
Dongcheng | 0.00% | 72.15% | 27.27% | 0.58% |
Fangshan | 16.48% | 81.22% | 2.27% | 0.02% |
Fengtai | 45.97% | 33.50% | 20.50% | 0.03% |
Haidian | 24.51% | 67.12% | 8.25% | 0.12% |
Huairou | 4.94% | 90.70% | 4.34% | 0.01% |
Mentougou | 2.54% | 97.26% | 0.20% | 0.01% |
Miyun | 14.38% | 82.24% | 3.27% | 0.11% |
Pinggu | 11.67% | 87.40% | 0.89% | 0.05% |
Shijingshan | 6.82% | 85.65% | 7.45% | 0.08% |
Shunyi | 57.37% | 39.38% | 3.19% | 0.06% |
Tongzhong | 86.95% | 11.08% | 1.79% | 0.19% |
Xicheng | 0.00% | 51.30% | 46.72% | 1.98% |
Yanqing | 15.55% | 81.66% | 2.75% | 0.03% |
District | OE-AL | OE-FL | OE-GL | OE-WB |
---|---|---|---|---|
Changping | 11.86% | 86.89% | 1.13% | 0.12% |
Chaoyang | 12.65% | 63.67% | 22.85% | 0.83% |
Daxing | 80.04% | 14.71% | 5.10% | 0.15% |
Dongcheng | 0.00% | 71.41% | 26.51% | 2.08% |
Fangshan | 11.84% | 85.72% | 2.36% | 0.09% |
Fengtai | 36.80% | 39.39% | 23.68% | 0.12% |
Haidian | 18.07% | 72.69% | 8.78% | 0.47% |
Huairou | 3.42% | 92.19% | 4.34% | 0.05% |
Mentougou | 1.74% | 98.04% | 0.19% | 0.02% |
Miyun | 10.24% | 86.01% | 3.36% | 0.40% |
Pinggu | 8.24% | 90.68% | 0.91% | 0.17% |
Shijingshan | 4.74% | 87.49% | 7.48% | 0.30% |
Shunyi | 47.74% | 48.15% | 3.83% | 0.28% |
Tongzhong | 81.43% | 15.24% | 2.42% | 0.92% |
Xicheng | 0.00% | 49.18% | 43.99% | 6.83% |
Yanqing | 11.13% | 85.89% | 2.84% | 0.13% |
3.3. Estimation of Carbon Emissions and Oxygen Consumption Based on Socioeconomic Statistics
Districts | Industrial Fossil Fuel | Human Respiration | Domestic Energy | Transportation | Solid Waste | Total | |
---|---|---|---|---|---|---|---|
Carbon emissions | Changping | 3.11 × 106 | 1.49 × 105 | 4.13 × 105 | 7.94 × 104 | 3.15 × 104 | 3.78 × 106 |
Chaoyang | 9.77 106 | 3.18 × 105 | 1.18 × 106 | 2.15 × 105 | 9.02 × 104 | 1.16 × 106 | |
Daxing | 2.84 × 106 | 1.22 × 105 | 2.54 × 105 | 7.37 × 104 | 2.89 × 104 | 3.32 × 106 | |
Dongcheng | 2.70 × 106 | 8.23 × 104 | 3.76 × 105 | 8.26 × 104 | 3.15 × 104 | 3.28 × 106 | |
Fangshan | 8.48 × 106 | 8.47 × 104 | 1.84 × 105 | 4.75 × 104 | 1.19 × 104 | 8.81 × 106 | |
Fengtai | 3.74 × 106 | 1.89 × 105 | 7.04 × 105 | 1.44 × 105 | 6.18 × 104 | 4.84 × 106 | |
Haidian | 7.82 × 106 | 2.94 × 105 | 8.87 × 105 | 1.89 × 105 | 6.35 × 104 | 9.26 × 106 | |
Huairou | 9.81 × 105 | 3.34 × 104 | 7.64 × 104 | 1.95 × 104 | 7.67 × 103 | 1.12 × 106 | |
Mentougou | 7.08 × 105 | 2.60 × 104 | 7.18 × 104 | 1.45 × 104 | 6.95 × 103 | 8.28 × 105 | |
Miyun | 9.13 × 105 | 4.19 × 104 | 9.15 × 104 | 1.78 × 104 | 7.40 × 103 | 1.07 × 106 | |
Pinggu | 9.67 × 105 | 3.73 × 104 | 7.43 × 104 | 1.81 × 104 | 5.58 × 103 | 1.10 × 106 | |
Shijingshan | 6.17 × 106 | 5.52 × 104 | 1.13 × 105 | 3.24 × 104 | 9.28 × 103 | 6.38 × 106 | |
Shunyi | 8.30 × 106 | 7.86 × 104 | 2.58 × 105 | 4.70 × 104 | 1.20 × 104 | 8.70 × 106 | |
Tongzhong | 2.72 × 106 | 1.06 × 105 | 3.41 × 105 | 5.65 × 104 | 1.62 × 104 | 3.24 × 106 | |
Xicheng | 4.02 × 106 | 1.11 × 105 | 3.94 × 105 | 1.03 × 105 | 4.07 × 104 | 4.67 × 106 | |
Yanqing | 4.88 × 105 | 2.84 × 104 | 4.96 × 104 | 1.21 × 104 | 4.35 × 103 | 5.83 × 105 | |
Beijing | 6.37 × 107 | 1.76 × 106 | 5.47 × 106 | 1.15 × 106 | 4.30 × 105 | 7.25 × 107 | |
Oxygen consumption | Changping | 8.28 × 106 | 4.55 × 105 | 1.15 × 106 | 2.12 × 105 | 8.40 × 104 | 1.02 × 107 |
Chaoyang | 2.61 × 107 | 9.70 × 105 | 3.28 × 106 | 5.73 × 105 | 2.40 × 105 | 3.11 × 107 | |
Daxing | 7.58 × 106 | 3.74 × 105 | 7.08 × 105 | 1.97 × 105 | 7.71 × 104 | 8.94 × 106 | |
Dongcheng | 7.21 × 106 | 2.52 × 105 | 1.05 × 106 | 2.20 × 105 | 8.41 × 104 | 8.81 × 106 | |
Fangshan | 2.26 × 107 | 2.59 × 105 | 5.14 × 105 | 1.27 × 105 | 3.18 × 104 | 2.35 × 107 | |
Fengtai | 9.98 × 106 | 5.78 × 105 | 1.96 × 106 | 3.85 × 105 | 1.65 × 105 | 1.31 × 107 | |
Haidian | 2.09 × 107 | 8.98 × 105 | 2.47 × 106 | 5.05 × 105 | 1.69 × 105 | 2.49 × 107 | |
Huairou | 2.62 × 106 | 1.02 × 105 | 2.13 × 105 | 5.19 × 104 | 2.05 × 104 | 3.00 × 106 | |
Mentougou | 1.89 × 106 | 7.94 × 104 | 2.00 × 105 | 3.87 × 104 | 1.85 × 104 | 2.23 × 106 | |
Miyun | 2.43 × 106 | 1.28 × 105 | 2.55 × 105 | 4.75 × 104 | 1.97 × 104 | 2.88 × 106 | |
Pinggu | 2.58 × 106 | 1.14 × 105 | 2.07 × 105 | 4.82 × 104 | 1.49 × 104 | 2.96 × 106 | |
Shijingshan | 1.64 × 107 | 1.69 × 105 | 3.15 × 105 | 8.63 × 104 | 2.48 × 104 | 1.70 × 107 | |
Shunyi | 2.21 × 107 | 2.40 × 105 | 7.19 × 105 | 1.25 × 105 | 3.21 × 104 | 2.33 × 107 | |
Tongzhong | 7.26 × 106 | 3.24 × 105 | 9.50 × 105 | 1.51 × 105 | 4.33 × 104 | 8.73 × 106 | |
Xicheng | 1.07 × 107 | 3.40 × 105 | 1.10 × 106 | 2.75 × 105 | 1.08 × 105 | 1.26 × 107 | |
Yanqing | 1.30 × 106 | 8.68 × 104 | 1.38 × 105 | 3.22 × 104 | 1.16 × 104 | 1.57 × 106 | |
Beijing | 1.70 × 108 | 5.37 × 106 | 1.50 × 107 | 3.07 × 106 | 1.15 × 106 | 1.95 × 108 |
3.4. Data Limitation and Uncertainty Analysis
3.5. Evaluation of the Carbon and Oxygen Balances in Urban Ecosystems
Districts | Carbon_bal | Oxygen_bal |
---|---|---|
Changping | −0.2742 | −0.8116 |
Chaoyang | −0.9805 | −0.9949 |
Daxing | −0.6838 | −0.9369 |
Dongcheng | −0.9969 | −0.9992 |
Fangshan | −0.5091 | −0.8716 |
Fengtai | −0.9676 | −0.9925 |
Haidian | −0.9499 | −0.9873 |
Huairou | 3.8764 | 0.3180 |
Mentougou | 3.8707 | 0.3261 |
Miyun | 3.7230 | 0.2382 |
Pinggu | 1.0099 | −0.4681 |
Shijingshan | −0.9863 | −0.9963 |
Shunyi | −0.8451 | −0.9650 |
Tongzhong | −0.7191 | −0.9440 |
Xicheng | −0.9990 | −0.9997 |
Yanqing | 7.0970 | 1.1076 |
Beijing | −0.5479 | −0.8828 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lenzen, M.; Pade, L.L.; Munksgaard, J. CO2 multipliers in multi-region input-output models. Econ. Syst. Res. 2004, 16, 391–412. [Google Scholar] [CrossRef]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous united states. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef]
- Sullivan, P. Energetic cities energy, environment and strategic thinking. World Policy J. 2010, 27, 11–13. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the seattle, wa region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Churkina, G. Modeling the carbon cycle of urban systems. Ecol. Model. 2008, 216, 107–113. [Google Scholar] [CrossRef]
- Zhu, X.-J.; Yu, G.R.; He, H.L.; Wang, Q.F.; Chen, Z.; Gao, Y.N.; Zhang, Y.P.; Zhang, J.H.; Yan, J.H.; Wang, H.M.; et al. Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of china: Results from upscaling network observations. Glob. Planet. Chang. 2014, 118, 52–61. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E. A regional forest ecosystem carbon budget model: Impacts of forest age structure and landuse history. Ecol. Model. 2003, 164, 33–47. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Sun, L.; Liu, Z. Consumption-based CO2 accounting of china’s megacities: The case of beijing, tianjin, shanghai and chongqing. Ecol. Indic. 2014, 47, 26–31. [Google Scholar] [CrossRef]
- Walz, A.; Calonder, G.P.; Hagedorn, F.; Lardelli, C.; Lundström, C.; Stöckli, V. Regional CO2 budget, countermeasures and reduction aims for the alpine tourist region of davos, switzerland. Energy Policy 2008, 36, 811–820. [Google Scholar] [CrossRef]
- Hayha, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Model. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Kong, Z.-H.; Escobedo, F.J.; Gao, J. Impacts of urban forests on offsetting carbon emissions from industrial energy use in hangzhou, china. J. Environ. Manag. 2010, 91, 807–813. [Google Scholar] [CrossRef]
- Weissert, L.; Salmond, J.; Schwendenmann, L. A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Clim. 2014, 8, 100–125. [Google Scholar] [CrossRef]
- Lin, W.; Wu, T.; Zhang, C.; Yu, T. Carbon savings resulting from the cooling effect of green areas: A case study in beijing. Environ. Pollut. 2011, 159, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, F.P.; Gioli, B.; Toscano, P.; Perrone, C. Carbon dioxide balance assessment of the city of florence (italy), and implications for urban planning. Landsc. Urban Plan. 2013, 120, 138–146. [Google Scholar] [CrossRef]
- Lloyd, J.; Shibistova, O.; Zolotoukhine, D.; Kolle, O.; Arneth, A.; Wirth, C.; Styles, J.M.; Tchebakova, N.M.; Schulze, E.D. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central siberian pine forest. Tellus Ser. B 2002, 54, 590–610. [Google Scholar] [CrossRef]
- Kolari, P.; Pumpanen, J.; Rannik, U.; Ilvesniemi, H.; Hari, P.; Berninger, F. Carbon balance of different aged scots pine forests in southern finland. Glob. Chang. Biol. 2004, 10, 1106–1119. [Google Scholar] [CrossRef]
- McGuire, A.; Sitch, S.; Clein, J.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, M.; Joos, F.; Kaplan, J.; Kicklighter, D. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of co2, climate and land use effects with four process—Based ecosystem models. Glob. Biogeochem. Cycles 2001, 15, 183–206. [Google Scholar] [CrossRef]
- Kelsey, K.; Neff, J. Estimates of aboveground biomass from texture analysis of landsat imagery. Remote Sens. 2014, 6, 6407–6422. [Google Scholar] [CrossRef]
- Lestan, K.; Eržen, I.; Golobič, M. The role of open space in urban neighbourhoods for health-related lifestyle. Int. J. Environ. Res. Public Health 2014, 11, 6547–6570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Brown, D.G.; Fang, H.; Theobald, D.M.; Liu, T.; Zhang, T. Vegetation productivity consequences of human settlement growth in the eastern united states. Landsc. Ecol. 2012, 27, 1149–1165. [Google Scholar] [CrossRef]
- Silaydin Aydin, M.B.; Çukur, D. Maintaining the carbon–oxygen balance in residential areas: A method proposal for land use planning. Urban For. Urban Green. 2012, 11, 87–94. [Google Scholar]
- Duan, X.N.; Wang, X.K.; Lu, F.; Ouyang, Z.Y. Carbon sequestration and its potential by wetland ecosystems in china. Acta Ecol. Sin. 2008, 28, 463–469. [Google Scholar] [CrossRef]
- Dang, Y.; Li, Y.; Sun, R.; Hu, B.; Zhang, T.; Liu, Y. Estimation of Carbon Dioxide Emission in Beijing City. In Proceedings of the Urban Remote Sensing Event, 2009 Joint, Shanghai, China, 20–22 May 2009; pp. 1–6.
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in china, 1981–2000. Sci. China Ser. D 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Jingyun, F.; Guohua, L.; Songling, X. Biomass and net production of forest vegetation in china. Acta Ecol. Sin. 1996, 5, 497–508. [Google Scholar]
- Lal, R. Soil carbon sequestration in china through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degrad. Dev. 2002, 13, 469–478. [Google Scholar] [CrossRef]
- Xia, J.; Liu, S.; Liang, S.; Chen, Y.; Xu, W.; Yuan, W. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 2014, 6, 1783–1802. [Google Scholar] [CrossRef]
- Pan, G.; Li, L.; Wu, L.; Zhang, X. Storage and sequestration potential of topsoil organic carbon in china's paddy soils. Glob. Chang. Biol. 2004, 10, 79–92. [Google Scholar] [CrossRef]
- Wang, S.-X.; Yao, Y.; Zhou, Y. Analysis of ecological quality of the environment and influencing factors in china during 2005–2010. Int. J. Environ. Res. Public Health 2014, 11, 1673–1693. [Google Scholar] [CrossRef] [PubMed]
- Maselli, F.; Chiesi, M.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S.W. Modelling the forest carbon budget of a mediterranean region through the integration of ground and satellite data. Ecol. Model. 2009, 220, 330–342. [Google Scholar] [CrossRef]
- Ito, A. The regional carbon budget of east asia simulated with a terrestrial ecosystem model and validated using asiaflux data. Agric. For. Meteorol. 2008, 148, 738–747. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Analyzing land-cover change and corresponding impacts on carbon budget in a fast developing sub-tropical region by integrating modis and landsat tm/etm+ images. Appl. Geogr. 2013, 45, 10–21. [Google Scholar] [CrossRef]
- Trischler, J.; Sandberg, D.; Thörnqvist, T. An approach to estimate the productivity of various species on sites in sweden by choosing individual climate and productivity values and the MIAMI-model with modifications. In Proceedings of the “Climate change and forestry in northern Europe” Workshop, Uppsala, Sweden, 11–12 November 2013; pp. 1–12.
- Wang, W.; Dungan, J.; Hashimoto, H.; Michaelis, A.R.; Milesi, C.; Ichii, K.; Nemani, R.R. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. Primary production. Glob. Chang. Biol. 2011, 17, 1350–1366. [Google Scholar] [CrossRef]
- Wang, F.; Mladenoff, D.J.; Forrester, J.A.; Keough, C.; Parton, W.J. Global sensitivity analysis of a modified century model for simulating impacts of harvesting fine woody biomass for bioenergy. Ecol. Model. 2013, 259, 16–23. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, C.; Song, K.; Ren, C. Examining forest net primary productivity dynamics and driving forces in northeastern china during 1982–2010. Chin. Geogr. Sci. 2014, 24, 1–16. [Google Scholar] [CrossRef]
- Chen, H.; Chen, G.Q.; Ji, X. Cosmic emergy based ecological systems modelling. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2672–2700. [Google Scholar] [CrossRef]
- Ji, X. Ecological accounting and evaluation of urban economy: Taking beijing city as the case. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1650–1669. [Google Scholar] [CrossRef]
- Jiang, M.M.; Zhou, J.B.; Chen, B.; Yang, Z.F.; Ji, X.; Zhang, L.; Chen, G.Q. Ecological evaluation of beijing economy based on emergy indices. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2482–2494. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.W.; Yang, Z.F.; Chen, B.; Chen, G.Q. Measurement and evaluation of the metabolic capacity of an urban ecosystem. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1758–1765. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, B.; Chen, G.Q. Cosmic exergy based ecological assessment for a wetland in beijing. Ecol. Model. 2011, 222, 322–329. [Google Scholar] [CrossRef]
- Chuai, X.W.; Lai, L.; Huang, X.J.; Zhao, R.Q.; Wang, W.J.; Chen, Z.G. Temporospatial changes of carbon footprint based on energy consumption in china. J. Geogr. Sci. 2012, 22, 110–124. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J. A definition of “carbon footprint”. Ecol. Econ. Res. Trends 2007, 2, 55–65. [Google Scholar]
- Zhao, R.Q.; Huang, X.J.; Zhong, T.Y.; Peng, J.W. Carbon footprint of different industrial spaces based on energy consumption in china. J. Geogr. Sci. 2011, 21, 285–300. [Google Scholar] [CrossRef]
- Yu, G.; Wang, Q.; Liu, Y.; Liu, Y. Conceptual framework of carbon sequestration rate and potential increment of carbon sink of regional terrestrial ecosystem and scientific basis for quantitative carbon authentification. Prog. Geogr. 2011, 30, 771–787. [Google Scholar]
- Kok, R.; Benders, R.M.; Moll, H.C. Measuring the environmental load of household consumption using some methods based on input–output energy analysis: A comparison of methods and a discussion of results. Energy Policy 2006, 34, 2744–2761. [Google Scholar] [CrossRef]
- Mühle, S.; Balsam, I.; Cheeseman, C. Comparison of carbon emissions associated with municipal solid waste management in germany and the uk. Resour. Conserv. Recycl. 2010, 54, 793–801. [Google Scholar] [CrossRef]
- Geng, Y.; Peng, C.; Tian, M. Energy use and CO2 emission inventories in the four municipalities of china. Energy Proced. 2011, 5, 370–376. [Google Scholar] [CrossRef]
- Chen, W.; Huang, L.; Xiang, X.; Chen, J.; Sun, L. Gis based ccs source-sink matching models and decision support system. Energy Proced. 2011, 4, 5999–6006. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Ma, S. Low-carbon city logistics distribution network design with resource deployment. J. Clean. Prod. 2013, 85, 453–461. [Google Scholar]
- Zhang, Y.; Zheng, H.; Fath, B.D. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for beijing. Energy Policy 2014, 73, 540–551. [Google Scholar] [CrossRef]
- Qi, Y.; Xie, G.; Ge, L.; Zhang, C.; Li, S. Estimation of china’s carbon footprint based on apparent consumption. Resour. Sci. 2010, 32, 2053–2058. [Google Scholar]
- Li, L.; Chen, C.; Xie, S.; Huang, C.; Cheng, Z.; Wang, H.; Wang, Y.; Huang, H.; Lu, J.; Dhakal, S. Energy demand and carbon emissions under different development scenarios for shanghai, China. Energy Policy 2010, 38, 4797–4807. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Lin, K.; Hu, A. The ecological footprint analysis of fossil energy and electricity. Acta Ecol. Sin. 2008, 28, 1729–1735. [Google Scholar]
- Hubacek, K.; Sun, L. A scenario analysis of china's land use and land cover change: Incorporating biophysical information into input–output modeling. Struct. Chang. Econ. Dyn. 2001, 12, 367–397. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Ecological footprint accounting based on emergy—A case study of the chinese society. Ecol. Model. 2006, 198, 101–114. [Google Scholar] [CrossRef]
- Shao, L.; Wu, Z.; Chen, G.Q. Exergy based ecological footprint accounting for china. Ecol. Model. 2013, 252, 83–96. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q.; Yang, Z.F.; Jiangc, M.M. Ecological footprint accounting for energy and resource in china. Energy Policy 2007, 35, 1599–1609. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Modified ecological footprint accounting and analysis based on embodied exergy—A case study of the chinese society 1981–2001. Ecol. Econ. 2007, 61, 355–376. [Google Scholar] [CrossRef]
- Dong, Y.; Xia, B.; Chen, W. Carbon footprint of urban areas: An analysis based on emission sources account model. Environ. Sci. Policy 2014, 44, 181–189. [Google Scholar] [CrossRef]
- Song, T.; Wang, Y.; Sun, Y. Estimation of carbon dioxide flux and source partitioning over beijing, china. J. Environ. Sci. 2013, 25, 2429–2434. [Google Scholar] [CrossRef]
- Song, T.; Wang, Y. Carbon dioxide fluxes from an urban area in beijing. Atmos. Res. 2012, 106, 139–149. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Yang, Z.; Fath, B.D.; Li, S. Estimation of energy-related carbon emissions in beijing and factor decomposition analysis. Ecol. Model. 2013, 252, 258–265. [Google Scholar] [CrossRef]
- Christen, A.; Coops, N.; Crawford, B.; Kellett, R.; Liss, K.; Olchovski, I.; Tooke, T.; van der Laan, M.; Voogt, J. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos. Environ. 2011, 45, 6057–6069. [Google Scholar] [CrossRef]
- Qin, B.; Han, S.S. Planning parameters and household carbon emission: Evidence from high-and low-carbon neighborhoods in beijing. Habitat Int. 2013, 37, 52–60. [Google Scholar] [CrossRef]
- Tian, X.; Chang, M.; Tanikawa, H.; Shi, F.; Imura, H. Structural decomposition analysis of the carbonization process in beijing: A regional explanation of rapid increasing carbon dioxide emission in china. Energy Policy 2013, 53, 279–286. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, Y.; Johnson, K.C.; Shah, A.N.; Tan, J.; Wang, C.; Yu, L. Real-world operation conditions and on-road emissions of beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor. Sci. Total Environ. 2011, 409, 1476–1480. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Geng, Y.; Wang, H.; Ouyang, M. Regional disparity of urban passenger transport associated ghg (greenhouse gas) emissions in china: A review. Energy 2014, 68, 783–793. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Tong, L.; Zhang, H.; Lu, F.; Zheng, F.; Hou, P.; Song, W.; Ouyang, Z. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn. J. Environ. Sci. 2012, 24, 2104–2112. [Google Scholar] [CrossRef]
- Ma, J.; Heppenstall, A.; Harland, K.; Mitchell, G. Synthesising carbon emission for mega-cities: A static spatial microsimulation of transport CO2 from urban travel in beijing. Comput. Environ. Urban Syst. 2014, 45, 78–88. [Google Scholar] [CrossRef]
- Svirejeva-Hopkins, A.; Schellnhuber, H.-J. Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution. Ecol. Model. 2008, 216, 208–216. [Google Scholar] [CrossRef]
- Liu, F.; Klimont, Z.; Zhang, Q.; Cofala, J.; Zhao, L.; Huo, H.; Nguyen, B.; Schoepp, W.; Sander, R.; Zheng, B. Integrating mitigation of air pollutants and greenhouse gases in chinese cities: Development of gains-city model for beijing. J. Clean. Prod. 2013, 58, 25–33. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (lca) and life cycle energy analysis (lcea) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, H.; Li, S. Resources use and greenhouse gas emissions in urban economy: Ecological input–output modeling for beijing 2002. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3201–3231. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H.; Li, L.; Liu, Z.; Liang, S. Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis. Energy Policy 2013, 58, 312–318. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, G.Q. Methane emissions by chinese economy: Inventory and embodiment analysis. Energy Policy 2010, 38, 4304–4316. [Google Scholar] [CrossRef]
- Zhang, W.T.; Huang, B.; Luo, D. Effects of land use and transportation on carbon sources and carbon sinks: A case study in shenzhen, china. Landsc. Urban Plan. 2014, 122, 175–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Linlin, X.; Weining, X. Analyzing spatial patterns of urban carbon metabolism: A case study in beijing, China. Landsc. Urban Plan. 2014, 130, 184–200. [Google Scholar] [CrossRef]
- Font, A.; Grimmond, C.S.B.; Kotthaus, S.; Morguí, J.A.; Stockdale, C.; O’Connor, E.; Priestman, M.; Barratt, B. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in greater london. Environ. Pollut. 2015, 196, 98–106. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Guo, X.; Liu, G.; Huang, Y. Trend, seasonal and diurnal variations of atmospheric co2 in beijing. Chin. Sci. Bull. 2002, 47, 2050–2055. [Google Scholar] [CrossRef]
- Dhakal, S. Urban energy use and carbon emissions from cities in china and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Chen, G.; Guo, S.; Shao, L.; Li, J.; Chen, Z.-M. Three-scale input–output modeling for urban economy: Carbon emission by beijing 2007. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2493–2506. [Google Scholar] [CrossRef]
- Peng, J. Roles of vegetation on balance of carbon and oxygen in the pearl river delta. Acta Sci. Nat. Univ. Sunyatseni 2003, 42, 105–108. [Google Scholar]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in china. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zhao, Q.J.; Li, X.Q.; Cui, S.H.; Hua, L.Z.; Lin, T. A new carbon and oxygen balance model based on ecological service of urban vegetation. Chin. Geogr. Sci. 2010, 20, 144–151. [Google Scholar] [CrossRef]
- Bureau, B.M.S. Beijing Statistical Yearbook; China Statistics Press: Beijing, China, 2010. [Google Scholar]
- Qin, Z.C.; Huang, Y.; Zhuang, Q.L. Soil organic carbon sequestration potential of cropland in china. Glob. Biogeochem. Cycles 2013, 27, 711–722. [Google Scholar] [CrossRef]
- Jingyun, F.; Guohua, L.; Songling, X. Carbon reservoir of terrestrial ecosystem in China. In Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission; China Environmental Sciences Publishing House: Beijing, China, 1996; Volume 1091128, pp. 81–149. [Google Scholar]
- Kellett, R.; Christen, A.; Coops, N.C.; van der Laan, M.; Crawford, B.; Tooke, T.R.; Olchovski, I. A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landsc. Urban Plan. 2013, 110, 48–58. [Google Scholar] [CrossRef]
- Li, H.; Jin, Y.; Li, Y. Carbon emission and its reduction strategies during municipal solid waste treatment. China Environ. Sci. 2011, 31, 259–264. [Google Scholar]
- Mishalani, R.G.; Goel, P.K.; Westra, A.M.; Landgraf, A.J. Modeling the relationships among urban passenger travel carbon dioxide emissions, transportation demand and supply, population density, and proxy policy variables. Transp. Res. Part D 2014, 33, 146–154. [Google Scholar] [CrossRef]
- Shihong, Y. Primary study on effect of co balance of afforestatal trees in cities. Urban Environ. Urban Ecol. 1996, 1, 37–39. [Google Scholar]
- Parshall, L.; Gurney, K.; Hammer, S.A.; Mendoza, D.; Zhou, Y.; Geethakumar, S. Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the united states. Energy Policy 2010, 38, 4765–4782. [Google Scholar] [CrossRef]
- O’Brien, L.; Morris, J.; Stewart, A. Engaging with peri-urban woodlands in england: The contribution to people’s health and well-being and implications for future management. Int. J. Environ. Res. Public Health 2014, 11, 6171–6192. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, K.; Lu, D.; Tian, Y.; Zhao, Q.; Yuan, C. Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data. Sustainability 2015, 7, 195-221. https://doi.org/10.3390/su7010195
Yin K, Lu D, Tian Y, Zhao Q, Yuan C. Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data. Sustainability. 2015; 7(1):195-221. https://doi.org/10.3390/su7010195
Chicago/Turabian StyleYin, Kai, Dengsheng Lu, Yichen Tian, Qianjun Zhao, and Chao Yuan. 2015. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data" Sustainability 7, no. 1: 195-221. https://doi.org/10.3390/su7010195
APA StyleYin, K., Lu, D., Tian, Y., Zhao, Q., & Yuan, C. (2015). Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data. Sustainability, 7(1), 195-221. https://doi.org/10.3390/su7010195