A Certain Family of Integral Operators Associated with the Struve Functions
Abstract
:1. Introduction
- (i)
- For we have the normalized Struve function of order It is given as:
- (ii)
- For we have the normalized Struve function of order It is given as:
2. Preliminary Results
- (i)
- (ii)
3. Geometric Properties of Generalized Struve Functions
4. Univalence Criteria for Integral Operators
- (1)
- For then the function and is increasing and:From the inequalities (31) and (32), for we have:
- (2)
- For consider the function and is a decreasing function and:By combining the inequalities (31) and (34) for we get:From the inequalities (26), (27), (33) and (35), we obtain:
5. Starlikeness and Uniform Convexity Criteria for the Integral Operator
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goodman, A.W. On uniformly convex functions. Ann. Pol. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Raza, M. Some properties of an integral operator defined by Bessel function. Acta Univ. Apul. 2011, 26, 69–74. [Google Scholar]
- Baricz, A.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transf. Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Baricz, A. Some inequalities involving generalized Bessel functions. Math. Inequal. Appl. 2007, 10, 827–842. [Google Scholar] [CrossRef]
- Baricz, A.; Frasin, B.A. Univalence of integral operators involving Bessel functions. Appl. Math. Lett. 2010, 23, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E.; Orhan, H.; Srivastava, H.M. Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. Taiwan J. Math. 2011, 15, 883–917. [Google Scholar]
- Frasin, B.A. Sufficient conditions for integral operators defined by Bessel functions. J. Math. Inequal. 2010, 4, 301–306. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, J.-M. Computation of Special Functions; Wiley Interscience Publication: New York, NY, USA, 1996. [Google Scholar]
- Struve, H. Beitrag zur Theorie der Diffraction an Fernrohren. Ann. Phys. Chem. 1882, 17, 1008–1016. [Google Scholar] [CrossRef]
- Orhan, H.; Yagmur, N. Geometric properties of generalized Struve function. Analele ştiinţifice ale Universităţii “Al. I. Cuza” din Iaşi. Matematică 2017, 63, 229–244. [Google Scholar] [CrossRef]
- Baricz, A.; Dimitrov, D.K.; Orhan, H.; Yagmur, N. Radii of starlikeness of some special functions. Proc. Am. Math. Soc. 2016, 144, 3355–3367. [Google Scholar] [CrossRef] [Green Version]
- Orhan, H.; Yagmur, N. Starlikeness and convexity of generalized Struve functions. Abstr. Appl. Anal. 2013, 2013, 954513. [Google Scholar]
- Raza, M.; Yagmur, N. Some properties of a class of analytic functions defined by generalized Struve functions. Turk. J. Math. 2015, 39, 931–944. [Google Scholar] [CrossRef]
- Din, M.U.; Srivastava, H.M.; Raza, M. Univalence of certain integral operators involving generalized Struve functions. Hacet. J. Math. Stat. 2018, 47, 821–833. [Google Scholar]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Ravichandran, V. On uniformly convex functions. Ganita 2002, 53, 117–124. [Google Scholar]
- Pescar, V. A new generalization of Ahfors and Beckers criterion of univalence. Bull. Malays. Math. Soc. 1996, 19, 53–54. [Google Scholar]
- Kudriasov, N.S. Onekotorih priznakah odnolistnosti analiticesschihfunktii. Mathmaticskie Zametki 1973, 13, 359–366. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, S.; Srivastava, H.M.; Malik, S.N.; Raza, M.; Shahzadi, N.; Zainab, S. A Certain Family of Integral Operators Associated with the Struve Functions. Symmetry 2019, 11, 463. https://doi.org/10.3390/sym11040463
Mahmood S, Srivastava HM, Malik SN, Raza M, Shahzadi N, Zainab S. A Certain Family of Integral Operators Associated with the Struve Functions. Symmetry. 2019; 11(4):463. https://doi.org/10.3390/sym11040463
Chicago/Turabian StyleMahmood, Shahid, H.M. Srivastava, Sarfraz Nawaz Malik, Mohsan Raza, Neelam Shahzadi, and Saira Zainab. 2019. "A Certain Family of Integral Operators Associated with the Struve Functions" Symmetry 11, no. 4: 463. https://doi.org/10.3390/sym11040463
APA StyleMahmood, S., Srivastava, H. M., Malik, S. N., Raza, M., Shahzadi, N., & Zainab, S. (2019). A Certain Family of Integral Operators Associated with the Struve Functions. Symmetry, 11(4), 463. https://doi.org/10.3390/sym11040463