Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points
Abstract
:1. Introduction
2. Sufficiency Criterion for the Family
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Yang, D.-G.; Xu, N.-E. Some subclasses of meromorphically multivalent functions associated with a linear operator. Appl. Math. Comput. 2008, 195, 11–23. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Jiang, Y.-P.; Srivastava, H.M. Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function. Comput. Math. Appl. 2009, 57, 571–586. [Google Scholar] [CrossRef] [Green Version]
- Al-Amiri, H.; Mocanu, P.T. Some simple criteria of starlikeness and convexity for meromorphic functions. Mathematica (Cluj) 1995, 37, 11–21. [Google Scholar]
- Ali, R.M.; Ravichandran, V. Classes of meromorphic α-convex functions. Taiwanese J. Math. 2010, 14, 1479–1490. [Google Scholar] [CrossRef]
- Aouf, M.K.; Hossen, H.M. New criteria for meromorphic p-valent starlike functions. Tsukuba J. Math. 1993, 17, 481–486. [Google Scholar] [CrossRef]
- Arif, M. On certain sufficiency criteria for p-valent meromorphic spiralike functions. In Abstract and Applied Analysis; Hindawi: London, UK, 2012. [Google Scholar]
- Goyal, S.P.; Prajapat, J.K. A new class of meromorphic multivalent functions involving certain linear operator. Tamsui Oxf. J. Math. Sci. 2009, 25, 167–176. [Google Scholar]
- Joshi, S.B.; Srivastava, H.M. A certain family of meromorphically multivalent functions. Comput. Math. Appl. 1999, 38, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2001, 259, 566–581. [Google Scholar] [CrossRef]
- Raina, R.K.; Srivastava, H.M. A new class of mermorphically multivalent functions with applications of generalized hypergeometric functions. Math. Comput. Model. 2006, 43, 350–356. [Google Scholar] [CrossRef]
- Sun, Y.; Kuang, W.-P.; Wang, Z.-G. On meromorphic starlike functions of reciprocal order α. Bull. Malays. Math. Sci. Soc. 2012, 35, 469–477. [Google Scholar]
- Shi, L.; Wang, Z.-G.; Yi, J.-P. A new class of meromorphic functions associated with spirallike functions. J. Appl. Math. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Owa, S.; Darwish, H.E.; Aouf, M.A. Meromorphically multivalent functions with positive and fixed second coefficients. Math. Japon. 1997, 46, 231–236. [Google Scholar]
- Arif, M.; Ahmad, B. New subfamily of meromorphic starlike functions in circular domain involving q-differential operator. Math. Slovaca 2018, 68, 1049–1056. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Ahmad, B. A new subclass of meromorphic multivalent close-to-convex functions. Filomat 2016, 30, 2389–2395. [Google Scholar] [CrossRef]
- Arif, M.; Sokół, J.; Ayaz, M. Sufficient condition for functions to be in a class of meromorphic multivalent Sakaguchi type spiral-like functions. Acta Math. Sci. 2014, 34, 1–4. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, S.; Srivastava, G.; Srivastava, H.M.; Abujarad, E.S.A.; Arif, M.; Ghani, F. Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points. Symmetry 2019, 11, 764. https://doi.org/10.3390/sym11060764
Mahmood S, Srivastava G, Srivastava HM, Abujarad ESA, Arif M, Ghani F. Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points. Symmetry. 2019; 11(6):764. https://doi.org/10.3390/sym11060764
Chicago/Turabian StyleMahmood, Shahid, Gautam Srivastava, Hari Mohan Srivastava, Eman S.A. Abujarad, Muhammad Arif, and Fazal Ghani. 2019. "Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points" Symmetry 11, no. 6: 764. https://doi.org/10.3390/sym11060764
APA StyleMahmood, S., Srivastava, G., Srivastava, H. M., Abujarad, E. S. A., Arif, M., & Ghani, F. (2019). Sufficiency Criterion for A Subfamily of Meromorphic Multivalent Functions of Reciprocal Order with Respect to Symmetric Points. Symmetry, 11(6), 764. https://doi.org/10.3390/sym11060764