Bifurcations, Hidden Chaos and Control in Fractional Maps
Abstract
:1. Introduction
2. Basic Concepts
Stability of Fractional Order Maps
3. New Two and Three-Dimensional Fractional Maps
3.1. Description of the New Two-Dimensional Fractional Map
3.2. Bifurcation and 0-1 Test
3.3. Description of the New Three-Dimensional Fractional Map
3.4. Bifurcation and 0-1 Test
4. Chaos Control
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hénon, M. A two-dimensional mapping with a strange attractor. In The Theory of Chaotic Attractors; Springer: New York, NY, USA, 2004; pp. 94–102. [Google Scholar]
- Anton, H.; Rorres, C. Elementary Linear Algebra: Application Version, 7th ed.; Howard, Drexel Unversity: Philadelphia, PA, USA, 1994; pp. 571–572. [Google Scholar]
- Lozi, R. Un attracteur étrange du type attracteur de Hénon. J. Phys. Colloq. 1978, 39, C5-9. [Google Scholar]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems: From hidden oscillation in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Sprott, J.C.; Nazarimehr, F. Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1469. [Google Scholar] [CrossRef]
- Jafari, S.; Pham, V.T.; Golpayegani, S.M.R.H.; Moghtadaei, M.; Kingni, S.T. The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurc. Chaos 2016, 26, 1650211. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, Y.; Wei, Z.; Zhang, L. A new class of three-dimensional maps with hidden chaotic dynamics. Int. J. Bifurc. Chaos 2016, 26, 1650206. [Google Scholar] [CrossRef]
- Shabestari, P.S.; Panahi, S.; Hatef, B.; Jafari, S.; Sprott, J.C. Two simplest quadratic chaotic maps without equilibrium. Int. J. Bifurc. Chaos 2018, 28, 1850144. [Google Scholar]
- Jiang, H.; Liu, Y.; Wei, Z.; Zhang, L. Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn. 2016, 85, 2719–2727. [Google Scholar]
- Jiang, H.; Liu, Y.; Wei, Z.; Zhang, L. A New Class of Two-Dimensional Chaotic Maps with Closed Curve Fixed Points. Int. J. Bifurc. Chaos 2019, 29, 1950094. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Wang, X.; Pham, V.T. On chaos in the fractional-order discrete-time unified system and its control synchronization. Entropy 2018, 20, 530. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Luo, X.; Zhang, X.; Jiang, J. Homogenized Chebyshev-Arnold map and its application to color image encryption. IEEE Access 2019, 7, 114459–114471. [Google Scholar] [CrossRef]
- Xin, B.; Peng, W.; Kwon, Y. A fractional-order difference Cournot duopoly game with long memory. arXiv 2019, arXiv:1903.0430. [Google Scholar]
- Jouini, L.; Ouannas, A.; Khennaoui, A.A.; Wang, X.; Grassi, G.; Pham, V.T. The fractional form of a new three-dimensional generalized Hénon map. Adv. Differ. Equ. 2019, 1, 122. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Lozi, R.P.; Pham, V.T. On fractional–order discrete–time systems: Chaos, stabilization and synchronization. Chaos Solitons Fractals 2019, 119, 150–162. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Grassi, G.; Bendoukha, S. On chaos in the fractional-order Grassi–Miller map and its control. J. Comput. Appl. Math. 2019, 358, 293–305. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Bendoukha, S.; Grassi, G. On the dynamics and control of a fractional form of the discrete double scroll. Int. J. Bifurc. Chaos 2019, 29, 1950078. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Odibat, Z.; Pham, V.T.; Grassi, G. On the dynamics, control and synchronization of fractional-order Ikeda map. Chaos Solitons Fractals 2019, 123, 108–115. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Grassi, G.; Bendoukha, S. On the Q–S chaos synchronization of fractional-order discrete-time systems: General method and examples. Discret. Dyn. Nat. Soc. 2018, 2018, 2950357. [Google Scholar] [CrossRef] [Green Version]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Wang, X.; Pham, V.T. Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions. Adv. Differ. Equ. 2018, 2018, 1–14. [Google Scholar]
- Bendoukha, S.; Ouannas, A.; Wang, X.; Khennaoui, A.A.; Pham, V.T.; Grassi, G.; Huynh, V.V. The Co-existence of different synchronization types in fractional-order discrete-time chaotic systems with non–identical dimensions and orders. Entropy 2018, 20, 710. [Google Scholar] [CrossRef] [Green Version]
- Ouannas, A.; Wang, X.; Khennaoui, A.A.; Bendoukha, S.; Pham, V.T.; Alsaadi, F.E. Fractional form of a chaotic map without fixed points: Chaos, entropy and control. Entropy 2018, 20, 720. [Google Scholar]
- Khennaoui, A.A.; Ouannas, A.; Boulaaras, S.; Pham, V.T.; Taher Azar, A. A fractional map with hidden attractors: Chaos and control. Eur. Phys. J. Spec. Top. 2020, 229, 1083–1093. [Google Scholar]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Grassi, G.; Pham, V.T. Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization. AIP Adv. 2020, 10, 045310. [Google Scholar]
- Ouannas, A.; Khennaoui, A.; Momani, S.; Pham, V.T.; El-Khazali, R. Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy and control. Chin. Phys. B 2020, 29, 050504. [Google Scholar]
- Gottwald, G.A.; Melbourne, I. On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 2009, 8, 129–145. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 3, 1–12. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
- Cermak, J.; Gyori, I.; Nechvatal, L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015, 18, 651–672. [Google Scholar] [CrossRef]
- Mozyrska, D.; Wyrwas, M. Stability by linear approximation and the relation between the stability of difference and differential fractional systems. Math. Methods Appl. Sci. 2017, 40, 4080–4091. [Google Scholar] [CrossRef]
- Sprott, J.C. Strange Attractors: Creating Patterns in Chaos; M & T Books: New York, NY, USA, 1993. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouannas, A.; Almatroud, O.A.; Khennaoui, A.A.; Alsawalha, M.M.; Baleanu, D.; Huynh, V.V.; Pham, V.-T. Bifurcations, Hidden Chaos and Control in Fractional Maps. Symmetry 2020, 12, 879. https://doi.org/10.3390/sym12060879
Ouannas A, Almatroud OA, Khennaoui AA, Alsawalha MM, Baleanu D, Huynh VV, Pham V-T. Bifurcations, Hidden Chaos and Control in Fractional Maps. Symmetry. 2020; 12(6):879. https://doi.org/10.3390/sym12060879
Chicago/Turabian StyleOuannas, Adel, Othman Abdullah Almatroud, Amina Aicha Khennaoui, Mohammad Mossa Alsawalha, Dumitru Baleanu, Van Van Huynh, and Viet-Thanh Pham. 2020. "Bifurcations, Hidden Chaos and Control in Fractional Maps" Symmetry 12, no. 6: 879. https://doi.org/10.3390/sym12060879
APA StyleOuannas, A., Almatroud, O. A., Khennaoui, A. A., Alsawalha, M. M., Baleanu, D., Huynh, V. V., & Pham, V. -T. (2020). Bifurcations, Hidden Chaos and Control in Fractional Maps. Symmetry, 12(6), 879. https://doi.org/10.3390/sym12060879