Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library
Abstract
:1. Introduction
2. Preliminaries
3. Stochastic Arithmetic and the CESTAC Method
Algorithm 1: |
|
4. Main Idea
- (1)
- for ,
- (2)
- for all real numbers , .
5. Numerical Results
Algorithm 2: |
|
{ |
|
} |
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noeiaghdam, S.; Sidorov, D.; Muftahov, I.; Zhukov, A.V. Control of Accuracy on Taylor-Collocation Method for Load Leveling Problem. The Bulletin of Irkutsk State University. Ser. Math. 2019, 30, 59–72. [Google Scholar] [CrossRef]
- Sidorov, D.; Muftahov, I.; Tomin, N.; Karamov, D.; Panasetsky, D.; Dreglea, A.; Liu, F.; Foley, A. A Dynamic Analysis of Energy Storage with Renewable and Diesel Generation using Volterra Equations. IEEE Trans. Ind. 2019, 14, 3451–3459. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, D.; Zhukov, A.; Foley, A.; Tynda, A.; Muftahov, I.; Panasetsky, D.; Li, Y. Volterra Models in Load Leveling Problem. E3S Web Conf. 2018, 69, 01015. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Homotopy analysis transform method for solving generalized Abel’s fuzzy integral equations of the first kind. In Proceedings of the 4-th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Zahedan, Iran, 9–11 September 2015. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Homotopy regularization method to solve the singular Volterra integral equations of the first kind. Jordan J. Math. Stat. 2018, 10, 1–12. [Google Scholar]
- Srivastava, H.M.; Günerhan, H.; Ghanbari, B. Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity. Math. Methods Appl. Sci. 2019, 42, 7210–7221. [Google Scholar] [CrossRef]
- Sabir, Z.; Günerhan, H.; Guirao, J.L.G. On a new model based on third-order nonlinear multisingular functional differential equations. Math. Probl. Eng. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Ghanbari, B.; Günerhan, H.; Baskonus, H.M. Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation. Mod. Phys. Lett. B 2020, 34, 2050034. [Google Scholar] [CrossRef]
- Sidorov, N.A.; Leontev, R.Y.; Dreglya, A.I. On small solutions of nonlinear equations with vector parameter in sectorial neighborhoods. Math. Notes 2012, 91, 90–104. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Nonlocal Effects to Neutron Diffusion Equation in a Nuclear Reactor. J. Comput. Theor. Transp. 2020, 49, 267–281. [Google Scholar] [CrossRef]
- Muftahov, I.; Tynda, A.; Sidorov, D. Numeric solution of Volterra integral equations of the first kind with discontinuous kernels. J. Comput. Appl. Math. 2017, 313, 119–128. [Google Scholar] [CrossRef]
- Sidorov, D.N. On Parametric Families of Solutions of Volterra Integral Equations of the First Kind with Piecewise Smooth Kernel. Differ. Equ. 2013, 49, 210–216. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D.; Sizikov, V.; Sidorov, N. Control of accuracy on Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method. Appl. Comput. Math. 2020, 19, 87–105. [Google Scholar]
- Sidorov, D.; Tynda, A.; Muftahov, I.; Dreglea, A.; Liu, F. Nonlinear Systems of Volterra Equations with Piecewise Smooth Kernels: Numerical Solution and Application for Power Systems Operation. Mathematics 2020, 8, 1257. [Google Scholar] [CrossRef]
- Raffou, Y.N. Classification of positive solutions of nonlinear system of Volterra integral equations. Ann. Funct. Anal. 2011, 2, 34–41. [Google Scholar] [CrossRef]
- Sidorov, D. Solvability of system of integral Volterra equations of the first kind with piecewise continuous kernels. Russ. Math. (Iz.VUZ) 2013, 57, 54–63. [Google Scholar] [CrossRef]
- Goodrich, C.S. Perturbed Integral Operator Equations of Volterra Type with Applications to p-Laplacian Equations. Mediterr. J. Math. 2018, 15. [Google Scholar] [CrossRef]
- Sidorov, D.N. Generalized Solution to the Volterra Equations with Piecewise Continuous Kernels. Bull. Malays. Math. Sci. Soc. 2014, 37, 757–768. [Google Scholar]
- Belbas, S.A.; Bulka, Y. Numerical solution of multiple nonlinear Volterra integral equations. Appl. Math. Comput. 2011, 217, 4791–4804. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, D.N. Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations. Differ. Equ. 2014, 50, 1217–1224. [Google Scholar] [CrossRef]
- Sidorov, D. Integral Dynamical Models: Singularities, Signals And Control; World Scientific Series on Nonlinear Sciences Series A; Chua, L.O., Ed.; World Scientific Press: Singapore, 2015; Volume 87. [Google Scholar]
- Sidorov, N.; Sidorov, D.; Sinitsyn, A. Toward General Theory of Differential-Operator and Kinetic Models; World Scientific Series on Nonlinear Sciences Series A; Chua, L.O., Ed.; World Scientific Press: Singapore, 2020; Volume 97. [Google Scholar]
- Bernstein, S. Sur la nature analytique des solutions des certaines equations aux derivees partielles du second ordre. C. R. Acad. Sci. Paris 1903, 137, 778–781. [Google Scholar]
- Lyusternik, L.A. Certain questions in non-linear functional analysis. Uspekhi Mat. Nauk 1956, 11, 145–168. [Google Scholar]
- He, J.H. Homotopy perturbation technique. Comput. Meth. Appl. Mech. Engrg. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Internat. J. Non- Mech. 2000, 35, 37–43. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method: A new non-linear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar]
- Hussain, S.; Shah, A.; Ayub, S.; Ullah, A. An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon 2019, 5, e03060. [Google Scholar] [CrossRef] [Green Version]
- Abolvafaei, M.; Ganjefar, S. Maximum power extraction from fractional order doubly fed induction generator based wind turbines using homotopy singular perturbation method. Int. J. Electr. Power Energy Syst. 2020, 119, 105889. [Google Scholar] [CrossRef]
- Kashkari, B.S.; El-Tantawy, S.A.; Salas, A.H.; El-Sherif, L.S. Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma. Chaos Solitons Fractals 2020, 130, 109457. [Google Scholar] [CrossRef]
- Bota, C.; Caruntu, B. Approximate analytical solutions of nonlinear differential equations using the Least Squares Homotopy Perturbation Method. J. OfMath. Anal. Appl. 2017, 448, 401–408. [Google Scholar] [CrossRef]
- Eshkuvatov, Z.K.; Samihah Zulkarnain, F.; Long, N.M.A.N.; Muminov, Z. Homotopy perturbation method for the hypersingular integral equations of the first kind. Ain Shams Eng. J. 2018, 9, 3359–3363. [Google Scholar] [CrossRef]
- Javeed, S.; Baleanu, D.; Waheed, A.; Shaukat Khan, M.; Affan, H. Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations. Mathematics 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Trenogin, V.A. Functional Analysis; Fizmatlit: Moscow, Russia, 2007. [Google Scholar]
- Sidorov, N.; Loginov, B.; Sinitsyn, A.; Falaleev, M. Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications; Kluwer Academic Publisher: Dordrecht, The Netherlands; Boston, UK; London, UK, 2002. [Google Scholar]
- Trenogin, V.A.; Sidorov, N.A.; Loginov, B.V. Potentiality, group symmetry and bifurcation in the theory of branching equation. Differ. Integral Equ. 1990, 3, 145–154. [Google Scholar]
- Alt, R.; Lamotte, J.-L.; Markov, S. Stochastic arithmetic, Theory and experiments. Serdica J. Comput. 2010, 4, 1–10. [Google Scholar]
- Chesneaux, J.M.; Jézéquel, F. Dynamical control of computations using the Trapezoidal and Simpson’s rules. J. Univers. Comput. Sci. 1998, 4, 2–10. [Google Scholar]
- Chesneaux, J.M. Stochastic arithmetic properties. IMACS Comput. Appl. Math. 1992, 81–91. [Google Scholar]
- Chesneaux, J.M. CADNA, an ADA Tool for Round-Off Error Analysis and for Numerical Debugging; ADA in Aerospace: Barcelone, Spain, 1990.
- Vignes, J. Zéro mathématique et zéro informatique, in: La Vie des Sciences. Comptes Rendus De L’Académie De Sci. 1987, 4, 1–13. [Google Scholar]
- Jézéquel, F.; Rico, F.; Chesneaux, J.-M.; Charikhi, M. Reliable computation of a multiple integral involved in the neutron star theory. Math. Comput. Simul. 2006, 71, 44–61. [Google Scholar] [CrossRef]
- Jézéquel, F.; Chesneaux, J.-M. Computation of an infinite integral using Romberg’s method. Numer. Algorithms 2004, 36, 265–283. [Google Scholar] [CrossRef]
- Scott, N.S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M. Numerical ’health check’ for scientific codes: The CADNA approach. Comput. Phys. Commun. 2007, 176, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Jézéquel, F. Dynamical control of converging sequences computation. Appl. Numer. Math. 2004, 50, 147–164. [Google Scholar] [CrossRef]
- Jézéquel, F. A dynamical strategy for approximation methods. C. R. Acad. Sci. Paris-Mécanique 2006, 334, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Jézéquel, F.; Chesneaux, J.-M. CADNA: A library for estimating round-off error propagation. Comput. Phys. Commun. 2008, 178, 933–955. [Google Scholar] [CrossRef]
- Lamotte, J.-L.; Chesneaux, J.-M.; Jézéquel, F. CADNA_C: A version of CADNA for use with C or C++ programs. Comput. Phys. Commun. 2010, 181, 1925–1926. [Google Scholar] [CrossRef]
- Eberhart, P.; Brajard, J.; Fortin, P.; Jézéquel, F. High Performance Numerical Validation using Stochastic Arithmetic. Reliab. Comput. 2015, 21, 35–52. [Google Scholar]
- Graillat, S.; Jézéquel, F.; Wang, S.; Zhu, Y. Stochastic arithmetic in multi precision. Math. Comput. Sci. 2011, 5, 359–375. [Google Scholar] [CrossRef]
- Graillat, S.; Jézéquel, F.; Picot, R. Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic. Electron. Notes Theor. Comput. Sci. 2015, 317, 55–69. [Google Scholar] [CrossRef]
- Vignes, J. Discrete Stochastic Arithmetic for Validating Results of Numerical Software. Spec. Issue Numer. Algorithms 2004, 37, 377–390. [Google Scholar] [CrossRef]
- Vignes, J. A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 1993, 35, 233–261. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. Finding optimal step of fuzzy Newton-Cotes integration rules by using the CESTAC method. J. Fuzzy Set Valued Anal. 2017, 2017, 62–85. [Google Scholar] [CrossRef] [Green Version]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Valid implementation of Sinc-collocation method to solve the fuzzy Fredholm integral equation. J. Comput. Appl. Math. 2020, 370, 112632. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. A Novel Approach to Find Optimal Parameter in the Homotopy-Regularization Method for Solving Integral Equations. Appl. Math. Inf. Sci. 2020, 14, 1–8. [Google Scholar]
- Abbasbandy, S.; Fariborzi Araghi, M.A. Numerical solution of improper integrals with valid implementation. Math. Comput. Appl. 2002, 7, 83–91. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Fariborzi Araghi, M.A. A stochastic scheme for solving definite integrals. Appl. Numer. Math. 2005, 55, 125–136. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. A Valid Scheme to Evaluate Fuzzy Definite Integrals by Applying the CADNA Library. Int. Fuzzy Syst. Appl. 2017, 6, 1–20. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Dynamical control of computations using the Gauss-Laguerre integration rule by applying the CADNA library. Adv. Appl. Math. 2016, 16, 1–18. [Google Scholar]
- Abbasbandy, S.; Fariborzi Araghi, M.A. The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree. Appl. Numer. Math. 2004, 50, 279–290. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Valid implementation of the Sinc-collocation method to solve linear integral equations by the CADNA library. J. Math. Model. 2019, 7, 63–84. [Google Scholar]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer. Algorithms 2019, 81, 237–267. [Google Scholar] [CrossRef]
- Khojasteh Salkuyeh, D.; Toutounian, F. Optimal iterate of the power and inverse iteration methods. Appl. Numer. Math. 2009, 59, 1537–1548. [Google Scholar] [CrossRef]
- Khojasteh Salkuyeh, D.; Toutounian, F. Numerical accuracy of a certain class of iterative methods for solving linear system. Appl. Math. Comput. 2006, 176, 727–738. [Google Scholar]
- Graillat, S.; Jézéquel, F.; Ibrahim, M.S. Dynamical Control of Newton’s Method for Multiple Roots of Polynomials. Reliab. Comput. 2016, 21, 117–139. [Google Scholar]
- Sizikov, V.S.; Sidorov, D.N. Discrete Spectrum Reconstruction Using Integral Approximation Algorithm. Appl. Spectrosc. 2017, 71, 1640–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n | |||
---|---|---|---|
1 | −0.158949024126688 | 0.158949024126688 | |
2 | −0.159947054328260 | ||
3 | −0.159997865982876 | ||
4 | −0.159999928407226 | ||
5 | −0.159999997943235 | ||
6 | −0.159999999946935 | ||
7 | −0.159999999999848 | ||
8 | −0.159999999999976 | ||
9 | −0.159999999999999 | ||
10 | −0.160000000000000 |
n | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 |
n | |||
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noeiaghdam, S.; Dreglea, A.; He, J.; Avazzadeh, Z.; Suleman, M.; Fariborzi Araghi, M.A.; Sidorov, D.N.; Sidorov, N. Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library. Symmetry 2020, 12, 1730. https://doi.org/10.3390/sym12101730
Noeiaghdam S, Dreglea A, He J, Avazzadeh Z, Suleman M, Fariborzi Araghi MA, Sidorov DN, Sidorov N. Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library. Symmetry. 2020; 12(10):1730. https://doi.org/10.3390/sym12101730
Chicago/Turabian StyleNoeiaghdam, Samad, Aliona Dreglea, Jihuan He, Zakieh Avazzadeh, Muhammad Suleman, Mohammad Ali Fariborzi Araghi, Denis N. Sidorov, and Nikolai Sidorov. 2020. "Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library" Symmetry 12, no. 10: 1730. https://doi.org/10.3390/sym12101730
APA StyleNoeiaghdam, S., Dreglea, A., He, J., Avazzadeh, Z., Suleman, M., Fariborzi Araghi, M. A., Sidorov, D. N., & Sidorov, N. (2020). Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library. Symmetry, 12(10), 1730. https://doi.org/10.3390/sym12101730