Approximation Solution of the Fractional Parabolic Partial Differential Equation by the Half-Sweep and Preconditioned Relaxation
Abstract
:1. Introduction
2. Approximation to a Space-Fractional Diffusion Equation
3. Half-Sweep Preconditioned SOR Formulation
Algorithm 1 The HSPSOR iterative method. |
i. |
ii.
|
iii Stop. |
4. Numerical Evaluation via C++
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013119. [Google Scholar] [CrossRef]
- Solís-Pérez, J.E.; Gómez-Aguilar, J.F.; Atangana, A. A fractional mathematical model of breast cancer competition model. Chaos Solitons Fractals 2019, 127, 38–54. [Google Scholar] [CrossRef]
- Fatmawati, M.A.K.; Bonyah, E.; Hammouch, Z.; Shaiful, E.M. A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. Aims Math. 2020, 5, 2813–2842. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio Fractional Derivative to Solve the Fractional Model of Energy Supply-Demand System. Math. Model. Eng. Probl. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Higazy, M. Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic. Chaos Solitons Fractals 2020, 138, 110007. [Google Scholar] [CrossRef]
- Çelik, C.; Duman, M. Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 2012, 231, 1743–1750. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Wang, H. A fourth-order scheme for space fractional diffusion equations. J. Comput. Phys. 2018, 373, 410–424. [Google Scholar] [CrossRef]
- Sunarto, A.; Sulaiman, J. Investigation of fractional diffusion equation via QSGS iterations. J. Phys. Conf. Ser. 2019, 1179, 012014. [Google Scholar] [CrossRef]
- Tian, W.; Zhou, H.; Deng, W. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 2015, 84, 1703–1727. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Tian, W.; Deng, W. Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 2013, 56, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, Z. Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. Appl. Math. Comput. 2019, 350, 331–347. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Q. Kronecker product based preconditioners for boundary value method discretizations of space fractional diffusion equations. Math. Comput. Simul. 2020, 170, 316–331. [Google Scholar] [CrossRef]
- Fu, H.; Liu, H.; Wang, H. A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation. J. Comput. Phys. 2019, 388, 316–334. [Google Scholar] [CrossRef]
- Salehi, Y.; Darvishi, M.T.; Schiesser, W.E. Numerical solution of space fractional diffusion equation by the method of lines and splines. Appl. Math. Comput. 2018, 336, 465–480. [Google Scholar] [CrossRef]
- Hacksbusch, W. Iterative Solution of Large Sparse Systems of Equations, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
- Ibrahim, A.; Abdullah, A.R. Solving the two dimensional diffusion equation by the four point explicit decoupled group (EDG) iterative method. Int. J. Comput. Math. 1995, 58, 253–263. [Google Scholar] [CrossRef]
- Caputo, M. Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 2003, 46. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st ed.; Wiley-Interscience: New York, NY, USA, 1993. [Google Scholar]
- Aruchunan, E.; Muthuvalu, M.S.; Sulaiman, J. Quarter-sweep iteration concept on conjugate gradient normal residual method via second order quadrature-finite difference schemes for solving Fredholm integro-differential equations. Sains Malays. 2015, 44, 139–146. [Google Scholar] [CrossRef]
- Lung, J.C.V.; Sulaiman, J. On quarter-sweep finite difference scheme for one-dimensional porous medium equations. Int. J. Appl. Math. 2020, 2020, 33. [Google Scholar] [CrossRef]
- Sunarto, A.; Sulaiman, J.; Saudi, A. Solving the time fractional diffusion equations by the half-sweep SOR iterative method. In Proceedings of the 2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA), Bandung, Indonesia, 20–21 August 2014; pp. 272–277. [Google Scholar] [CrossRef]
- Gunawardena, A.D.; Jain, S.K.; Snyder, L. Modified iterative methods for consistent linear systems. Linear Algebra Appl. 1991, 154–156, 123–143. [Google Scholar] [CrossRef] [Green Version]
- Sunarto, A.; Sulaiman, J. Application half-sweep preconditioned SOR method for solving time-fractional diffusion equations. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Detroit, MI, USA, 10–14 August 2020; pp. 3414–3420. [Google Scholar]
M | Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
K | Time | Max Error | K | Time | Max Error | K | Time | Max Error | ||
128 | FSPSOR | 34 | 0.84 | 2.37 × 10−2 | 80 | 1.90 | 6.20 × 10−4 | 246 | 5.76 | 3.99 × 10−2 |
HSPSOR | 23 | 0.38 | 2.37 × 10−2 | 37 | 0.54 | 6.99 × 10−4 | 94 | 2.36 | 3.99 × 10−2 | |
256 | FSPSOR | 67 | 5.33 | 2.44 × 10−2 | 211 | 17.84 | 5.69 × 10−4 | 806 | 67.75 | 3.97 × 10−2 |
HSPSOR | 34 | 2.73 | 2.44 × 10−2 | 94 | 6.90 | 6.21 × 10−4 | 303 | 34.65 | 3.97 × 10−2 | |
512 | FSPSOR | 129 | 41.43 | 2.47 × 10−2 | 566 | 182.83 | 5.36 × 10−4 | 2635 | 843.91 | 3.96 × 10−2 |
HSPSOR | 67 | 22.65 | 2.47 × 10−2 | 246 | 86.09 | 5.69 × 10−4 | 988 | 421.58 | 3.96 × 10−2 | |
1024 | FSPSOR | 278 | 472.35 | 2.49 × 10−2 | 1514 | 898.29 | 5.13 × 10−4 | 11,829 | 2099.87 | 3.95 × 10−2 |
HSPSOR | 141 | 206.58 | 2.49 × 10−2 | 655 | 434.72 | 5.36 × 10−4 | 5413 | 1033.78 | 3.95 × 10−2 | |
2048 | FSPSOR | 608 | 1219.76 | 2.50 × 10−2 | 4052 | 4299.73 | 5.02 × 10−4 | 47,289 | 8852.28 | 3.93 × 10−2 |
HSPSOR | 305 | 608.80 | 2.50 × 10−2 | 2188 | 2133.43 | 5.13 × 10−4 | 23,143 | 4425.90 | 3.93 × 10−2 |
M | Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
K | Time | Max Error | K | Time | Max Error | K | Time | Max Error | ||
128 | FSPSOR | 34 | 0.84 | 2.37 × 10−2 | 80 | 1.90 | 6.20 × 10−4 | 246 | 5.76 | 3.99 × 10−2 |
HSPSOR | 23 | 0.38 | 2.37 × 10−2 | 37 | 0.54 | 6.99 × 10−4 | 94 | 2.36 | 3.99 × 10−2 | |
256 | FSPSOR | 67 | 5.33 | 2.44 × 10−2 | 211 | 17.84 | 5.69 × 10−4 | 806 | 67.75 | 3.97 × 10−2 |
HSPSOR | 34 | 2.73 | 2.44 × 10−2 | 94 | 6.90 | 6.21 × 10−4 | 303 | 34.65 | 3.97 × 10−2 | |
512 | FSPSOR | 129 | 41.43 | 2.47 × 10−2 | 566 | 182.83 | 5.36 × 10−4 | 2635 | 843.91 | 3.96 × 10−2 |
HSPSOR | 67 | 22.65 | 2.47 × 10−2 | 246 | 86.09 | 5.69 × 10−4 | 988 | 421.58 | 3.96 × 10−2 | |
1024 | FSPSOR | 278 | 472.35 | 2.49 × 10−2 | 1514 | 898.29 | 5.13 × 10−4 | 11,829 | 2099.87 | 3.95 × 10−2 |
HSPSOR | 141 | 206.58 | 2.49 × 10−2 | 655 | 434.72 | 5.36 × 10−4 | 5413 | 1033.78 | 3.95 × 10−2 | |
2048 | FSPSOR | 608 | 1219.76 | 2.50 × 10−2 | 4052 | 4299.73 | 5.02 × 10−4 | 47,289 | 8852.28 | 3.93 × 10−2 |
HSPSOR | 305 | 608.80 | 2.50 × 10−2 | 2188 | 2133.43 | 5.13 × 10−4 | 23,143 | 4425.90 | 3.93 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunarto, A.; Agarwal, P.; Chew, J.V.L.; Sulaiman, J. Approximation Solution of the Fractional Parabolic Partial Differential Equation by the Half-Sweep and Preconditioned Relaxation. Symmetry 2021, 13, 1005. https://doi.org/10.3390/sym13061005
Sunarto A, Agarwal P, Chew JVL, Sulaiman J. Approximation Solution of the Fractional Parabolic Partial Differential Equation by the Half-Sweep and Preconditioned Relaxation. Symmetry. 2021; 13(6):1005. https://doi.org/10.3390/sym13061005
Chicago/Turabian StyleSunarto, Andang, Praveen Agarwal, Jackel Vui Lung Chew, and Jumat Sulaiman. 2021. "Approximation Solution of the Fractional Parabolic Partial Differential Equation by the Half-Sweep and Preconditioned Relaxation" Symmetry 13, no. 6: 1005. https://doi.org/10.3390/sym13061005
APA StyleSunarto, A., Agarwal, P., Chew, J. V. L., & Sulaiman, J. (2021). Approximation Solution of the Fractional Parabolic Partial Differential Equation by the Half-Sweep and Preconditioned Relaxation. Symmetry, 13(6), 1005. https://doi.org/10.3390/sym13061005