Higher Number of Yeast-like Fungi in the Air in 2018 after an Emergency Discharge of Raw Sewage to the Gulf of Gdańsk—Use of Contingency Tables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Sampling Methods
2.2. Meteorological Conditions
2.3. Analysis and Identification of the Mold and Yeast-Like Fungi
2.4. Statistical Analysis
3. Results
3.1. The Number of Molds and Yeast-Like Fungi in the Air of Seaside Towns in the Gulf of Gdańsk in 2014–2017 and 2018
3.2. The Relationship between the Number of Molds and Yeast-Like Fungi in the Air of Coastal Towns and the Research Period of 2014–2017 and 2018
3.3. The Relationship between the Number of Mold Fungi Aspergillus sp., Penicillium sp., Cladosporium sp. in the Research Period of 2014–2017 vs. 2018
3.4. The Influence of Meteorological Parameters on the Number of Mold and Yeast-Like Fungi in the Air of the Towns Located in the Gulf of Gdańsk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalska, M.; Zorena, K.; Wąż, P.; Bartoszewicz, M.; Brandt-Varma, A.; Ślęzak, D.; Robakowska, M. Gaseous Pollutants, and Particulate Matter (PM) in Ambient Air and the Number of New Cases of Type 1 Diabetes in Children and Adolescents in the Pomeranian Voivodeship, Poland. BioMed Res. Int. 2020, 2020, 1648264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, T.K.; Azman, N.M.; Firdaus, R.B.R.; Ismail, N.A.; Rosli, H. Airborne fungi in Universiti Sains Malaysia: Knowledge, density and diversity. Environ. Monit. Assess. 2021, 193, 504. [Google Scholar] [CrossRef]
- Petrikkos, G.; Skiada, A.; Drogari-Apiranthitou, M. Epidemiology of mucormycosis in Europe. Clin. Microbiol. Infect. 2014, 20, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Cordero, J.M.; Núñez, A.; García, A.M.; Borge, R. Assessment and statistical modeling of airborne microorganisms in Madrid. Environ. Pollut. 2021, 269, 116124. [Google Scholar] [CrossRef]
- Marks, R.; Kruczalak, K.; Jankowska, K.; Michalska, M. Bacteria and fungi in air over the Gulf of Gdansk and Baltic Sea. J. Aerosol Sci. 2001, 32, 43–56. [Google Scholar] [CrossRef]
- Kallawicha, K.; Chuang, Y.C.; Lung, S.C.C.; Wu, C.F.; Han, B.C.; Ting, Y.F.; Chao, H.J. Outpatient visits for allergic diseases are associated with exposure to ambient fungal spores in the greater Taipei area. Aerosol Air Qual. Res. 2018, 18, 2077–2085. [Google Scholar] [CrossRef]
- Michałkiewicz, M. Comparison of wastewater treatment plants based on the emissions of microbiological contaminants. Environ. Monit. Assess. 2018, 190, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalska, M.; Wąż, P.; Zorena, K.; Bartoszewicz, M.; Korzeniowska, K.; Krawczyk, S.; Beń-Skowronek, I.; Myśliwiec, M. Potential effects of microbial air quality on the number of new cases of diabetes type 1 in children in two regions of Poland: A pilot study. Infect. Drug Resist. 2019, 12, 2323–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubiak-Lasocka, J.; Lasocki, J.; Badyda, A.J. The Influence of Particulate Matter on Respiratory Morbidity and Mortality in Children and Infants. Environmental Biomedicine. Adv. Exp. Med. Biol. 2014, 849, 39–48. [Google Scholar]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef] [Green Version]
- Gładka, A.; Rymaszewska, J.; Zatonski, T. Impact of air pollution on depression and suicide. Int. J. Occup. Med. Environ. Health 2018, 31, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kumari, D.; Achal, V. A review on airborne microbes: The characteristics of sources, pathogenicity, and geography. Atmosphere 2020, 11, 919. [Google Scholar] [CrossRef]
- Schlosser, O.; Robert, S.; Debeaupuis, C. Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites. Int. J. Hyg. Environ. Health 2016, 219, 239–251. [Google Scholar] [CrossRef]
- Michalska, M.; Królska, M. Surface distribution of the coliform bacteria in the Gdańsk Bay. Bull. Inst. Marit. Trop. Med. Gdynia 1995, 46, 67–70. [Google Scholar] [PubMed]
- Michalska, M.; Bartoszewicz, M.; Cieszyńska, M.; Nowacki, J. Bioaerosols on Tri-city (Gdańsk-Sopot-Gdynia) beaches. Int. Marit. Health 2010, 61, 41–43. [Google Scholar] [PubMed]
- Michalska, M.; Bartoszewicz, M.; Cieszyńska, M.; Nowacki, J. Bioaerozol morski w rejonie Zatoki Gdańskiej. Med. Srod. 2011, 14, 24–28. [Google Scholar]
- Michalska, M.; Zorena, K.; Bartoszewicz, M. Analysis of faecal bacteria isolated from air and sweater samples following an emergency sewage discharge into the Gulf of Gdansk in 2018—Preliminary study. Int. Marit. Health 2019, 70, 239–243. [Google Scholar] [CrossRef]
- Hameed, A.A.; Khoder, M.I.; Ibrahim, Y.H.; Saeed, Y.; Osman, M.E.; Ghanem, S. Study on some factors affecting survivability of airborne fungi. Sci. Total Environ. 2012, 414, 696–700. [Google Scholar] [CrossRef]
- Kowalewska, B.; Zorena, K.; Szmigiero-Kawko, M.; Wąż, P.; Myśliwiec, M. Higher diversity in fungal species discriminates children with type 1 diabetes mellitus from healthy control. Patient Prefer. Adherence 2016, 10, 591–599. [Google Scholar]
- Michalska, M.; Bartoszewicz, M.; Wąż, P.; Kozaczuk, S.; Beń-Skowronek, I.; Zorena, K. PM10 concentration and microbiological assessment of air in relation to the number of acute cases of type 1 diabetes mellitus in the Lubelskie Voivodeship. Preliminary report. Pediatr. Endocrinol. Diabetes Metab. 2017, 23, 70–76. [Google Scholar] [CrossRef]
- Madhwal, S.; Prabhu, V.; Sundriyal, S.; Shridhar, V. Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environ. Monit. Assess. 2020, 192, 196. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, O. Bioaerosols and health: Current knowledge and gaps in the field of waste management. Detritus 2018, 5, 111–125. [Google Scholar] [CrossRef]
- Rowe, B.R.; Canosa, A.; Drouffe, J.M.; Mitchell, J.B.A. Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environ. Res. 2021, 198, 111189. [Google Scholar] [CrossRef]
- Xie, W.; Li, Y.; Bai, W.; Hou, J.; Ma, T.; Zeng, X.; Zhang, L.; An, T. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 2021, 15, 44. [Google Scholar] [CrossRef]
- Lewandowska, A.; Falkowska, L.; Jóźwik, J. Factors determining the fluctuation of fluoride concentrations in PM10 aerosols in the urbanized coastal area of the Baltic Sea (Gdynia, Poland). Environ. Sci. Pollut. Res. Int. 2013, 20, 6109–6118. [Google Scholar] [CrossRef] [Green Version]
- Grythe, H.; Ström, J.; Krejci, R.; Quinn, P.; Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 2014, 14, 1277–1297. [Google Scholar] [CrossRef] [Green Version]
- Pakpour, S.; Li, D.W.; Klironomos, J. Relationships of fungal spore concentrations in the air and meteorological factors. Fungal Ecol. 2015, 13, 130–134. [Google Scholar] [CrossRef]
- Ma, M.; Zhen, Y.; Mi, T. Characterization of bacterial communities in bioaerosols over Northern Chinese Marginal Seas and the Northwestern Pacific Ocean in spring. J. Appl. Meteorol. Climatol. 2019, 58, 903–917. [Google Scholar] [CrossRef]
- Nakajima, R.; Tsuchiya, K.; Nakatomi, N.; Yoshida, T.; Tada, Y.; Konno, F.; Toda, T.; Kuwahara, V.S.; Hamasaki, K.; Othman, B.H.R.; et al. Enrichment of microbial abundance in the sea-surface microlayer over a coral reef: Implications for biogeochemical cycles in reef ecosystems. Mar. Ecol. Prog. Ser. 2013, 490, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Rastelli, E.; Corinaldesi, C.; Dell’Anno, A.; Martire, M.L.; Greco, S.; Facchini, M.C.; Rinaldi, M.; O’Dowd, C.; Ceburnis, D.; Danovaro, R. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: An experimental approach. Sci. Rep. 2017, 7, 11475. [Google Scholar] [CrossRef]
- Marks, R.; Górecka, E.; McCartney, K.; Borkowski, W. Rising bubbles as mechanism for scavenging and aerosolization of diatoms. J. Aerosol Sci. 2019, 128, 79–88. [Google Scholar] [CrossRef]
- Michaud, J.M.; Thompson, L.R.; Kaul, D.; Espinoza, J.L.; Richter, R.A.; Xu, Z.Z.; Lee, C.; Pham, K.M.; Beall, C.M.; Malfatti, F.; et al. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Michalska, M.; Kurpas, M.; Zorena, K.; Wąż, P.; Marks, R. Mold and Yeast-Like Fungi in the Seaside Air of the Gulf of Gdansk (Southern Baltic) after an Emergency Disposal of Raw Sewage. J. Fungi 2021, 7, 219. [Google Scholar] [CrossRef]
- Cieszyńska, M.; Wesołowski, M.; Bartoszewicz, M.; Michalska, M. Assessment of river water quality in the South Baltic coast by multivariate techniques. Cent. Eur. J. Chem. 2011, 9, 265–274. [Google Scholar] [CrossRef]
- Staniszewska, M.; Graca, B.; Bełdowska, M.; Saniewska, D. Factors controlling benzo(a)pyrene concentration in aerosols in the urbanized coastal zone. A case study: Gdynia, Poland (Southern Baltic Sea). Environ. Sci. Pollut. Res. 2013, 20, 4154–4163. [Google Scholar] [CrossRef] [Green Version]
- Przybyła, C.; Kozdrój, P.; Sojka, M. Wykorzystanie wielowymiarowych metod statystycznych w analizie stanu fizykochemicznego wód w systemie rzeka—Zbiornik retencyjny na przykładzie zbiorników retencyjnych Pakosław i Jutrosin położonych w zlewni rzeki Orli. Rocz. Ochr. Sr. 2015, 17, 1125–1141. [Google Scholar]
- Banda, T.D.; Kumarasamy, M. Application of Multivariate Statistical Analysis in the Development of a Surrogate Water Quality Index (WQI) for South African Watersheds. Water 2020, 12, 1584. [Google Scholar] [CrossRef]
- Wei, M.; Li, M.; Xu, C.; Xu, P.; Liu, H. Pollution characteristics of bioaerosols in PM2.5 during the winter heating season in a coastal city of northern China. Environ. Sci. Pollut. Res. 2020, 27, 27750–27761. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Tang, Q.; Xu, H.; Huang, S.; Shang, D.; Liu, R. Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods. PLoS ONE 2021, 16, e0245525. [Google Scholar]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem Statistica PL na Przykładach z Medycyny: Analizy Wielowymiarowe, 2nd ed.; StatSoft Polska: Kraków, Poland, 2007; pp. 5–293. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Käärik, A.; Keller, J.; Kiffer, E.; Perreau, J.; Reisinger, O.; Nilsson, S. Atlas of Airborne Fungal Spores in Europe, 1st ed.; Springer: Berlin, Germany, 1983. [Google Scholar]
- Campbell, C.K.; Johnson, E.M.; Warnock, D.W. Identification of Pathogenic Fungi; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; John Wiley and Sous Inc.: Hoboken, NJ, USA, 1950; Volume II. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 31 July 2021).
- Friendly, M.; Turner, H.; Zeileis, A.; Murdoch, D.; Firth, D. vcdExtra: “vcd” Extensions and Additions; R Package Version 0.7–1; R Package: Vienna, Austria, 2017; Available online: https://cran.r-project.org/package=vcdExtra%0A%0A (accessed on 13 June 2018).
- Hothorn, T.; Hornik, K.; van de Wiel, M.A.; Zeileis, A. Implementing a class of permutation tests The coin package. J. Stat. Softw. 2008, 28, 13794. [Google Scholar] [CrossRef]
- Sojka, M.; Siepak, M.; Gnojska, E. Ocena zawartości metali ciężkich w osadach dennych wstępnej części zbiornika retencyjnego Stare Miasto na rzece Powie. Rocz. Ochr. Sr. 2013, 15, 1916–1928. [Google Scholar]
- Gałęzowska, G.; Rogowska, J.; Olkowska, E.; Ratajczyk, W.; Wolska, L. Environmental Risk Assessment Resulting from Sediment Contamination with Perfluoroalkyl Substances. Molecules 2020, 26, 116. [Google Scholar] [CrossRef]
- Levei, L.; Hoaghia, M.-A.; Roman, M.; Marmureanu, L.; Moisa, C.; Levei, E.A.; Ozunu, A.; Cadar, O. Temporal Trend of PM10 and Associated Human Health Risk over the Past Decade in Cluj-Napoca City, Romania. Appl. Sci. 2020, 10, 5331. [Google Scholar] [CrossRef]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health Risks Associated with Exposure to Filamentous Fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smilanick, J.L.; Mansour, M.F. Influence of temperature and humidity on survival of Penicillium digitatum and Geotrichum citri-aurantii. Plant Dis. 2007, 91, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Rodrigez-Rajo, F.; Iglesias, I.; Jato, V. Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycol. Res. 2005, 109, 497–507. [Google Scholar] [CrossRef]
- Quintero, E.; Rivera-Merani, F.; Bolaños, B. Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiología 2010, 26, 113–124. [Google Scholar] [CrossRef]
- Haskouri, F.E.; Bouziane, H.; del Mar Trigo, M.; Kadiri, M.; Kazzaz, M. Airborne ascospores in Tetouan (NW Morocco) and meteorological parameters. Aerobiologia 2016, 32, 669–681. [Google Scholar] [CrossRef]
The Number of Molds and Yeast-Like Fungi (CFU/m3) in the Seaside Air over the Gulf of Gdańsk | |||
---|---|---|---|
Location | 2014–2017 | 2018 | p-Value |
Hel | 17 ± 19 12 (0–66) a | 260 ± 494 20 (0–1000) a | >0.05 |
Puck | 36 ± 18 (8–60) a | 194 ± 90 (105–285) a | |
Gdynia | 34 ± 35 18 (2–100) a | 0.00 | |
Sopot | 16 ± 8 (6–22) a | 228 ± 195 (48–661) a | |
Gdańsk-Brzeźno | 20 ± 10 (2–42) a | 205 ± 180 (32–511) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalska, M.; Wąż, P.; Kurpas, M.; Marks, R.; Zorena, K. Higher Number of Yeast-like Fungi in the Air in 2018 after an Emergency Discharge of Raw Sewage to the Gulf of Gdańsk—Use of Contingency Tables. Symmetry 2021, 13, 1522. https://doi.org/10.3390/sym13081522
Michalska M, Wąż P, Kurpas M, Marks R, Zorena K. Higher Number of Yeast-like Fungi in the Air in 2018 after an Emergency Discharge of Raw Sewage to the Gulf of Gdańsk—Use of Contingency Tables. Symmetry. 2021; 13(8):1522. https://doi.org/10.3390/sym13081522
Chicago/Turabian StyleMichalska, Małgorzata, Piotr Wąż, Monika Kurpas, Roman Marks, and Katarzyna Zorena. 2021. "Higher Number of Yeast-like Fungi in the Air in 2018 after an Emergency Discharge of Raw Sewage to the Gulf of Gdańsk—Use of Contingency Tables" Symmetry 13, no. 8: 1522. https://doi.org/10.3390/sym13081522
APA StyleMichalska, M., Wąż, P., Kurpas, M., Marks, R., & Zorena, K. (2021). Higher Number of Yeast-like Fungi in the Air in 2018 after an Emergency Discharge of Raw Sewage to the Gulf of Gdańsk—Use of Contingency Tables. Symmetry, 13(8), 1522. https://doi.org/10.3390/sym13081522