Temperature and Density Conditions for Alpha Clustering in Excited Self-Conjugate Nuclei
Abstract
:1. Introduction
2. Experiment and Event Selection
3. Experimental Results
3.1. Evidence for Alpha-Particle Clustering
3.2. Alpha Clustering: Temperature and Density Information
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, T.; Hempel, M.; Sagert, I.; Suwa, Y.; Schaffner-Bielich, J. Symmetry energy impact in simulations of core-collapse supernovae. Eur. Phys. J. A 2014, 50, 46. [Google Scholar] [CrossRef] [Green Version]
- Arcones, A.; Martínez-Pinedo, G.; O’Connor, E.; Schwenk, A.; Janka, H.T.; Horowitz, C.J.; Langanke, K. Influence of light nuclei on neutrino-driven supernova outflows. Phys. Rev. C 2008, 78, 015806. [Google Scholar] [CrossRef] [Green Version]
- Röpke, G.; Schnell, A.; Schuck, P.; Nozieres, P. Four-Particle Condensate in Strongly Coupled Fermion systems. Phys. Rev. Lett. 1998, 80, 3177–3180. [Google Scholar] [CrossRef]
- Beyer, M.; Sofianos, S.A.; Kuhrts, C.; Roepke, G.; Schuck, P. The α-particle in nuclear matter. Phys. Lett. B 2000, 488, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, C.J.; Schwenk, A. Cluster formation and the virial equation of state oflow-density nuclear matter. Nucl. Phys. A 2006, 776, 55–79. [Google Scholar] [CrossRef] [Green Version]
- Samadar, S.K.; De, J.N.; Viñas, X.; Centelles, M. Symmetry coefficients and incompressibility of clusterized supernova matter. Phys. Rev. C 2009, 80, 035803. [Google Scholar] [CrossRef] [Green Version]
- Typel, S.; Röpke, G.; Klähn, T.; Blaschke, D.; Wolter, H.H. Composition and thermodynamics of nuclear matter with light clusters. Phys. Rev. C 2010, 81, 015803. [Google Scholar] [CrossRef] [Green Version]
- Girod, M.; Schuck, P. α-Particle Clustering from Expanding Self-Conjugate Nuclei within the Hartree-Fock-Bogoliubov Approach. Phys. Rev. Lett. 2013, 111, 132503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebran, J.-P.; Khan, E.; Niks̃ić, T.; Vretenar, D. Cluster-liquid transition in finite, saturated fermionic systems. Phys. Rev. C 2014, 89, 031303(R). [Google Scholar] [CrossRef] [Green Version]
- Ebran, J.-P.; Girod, M.; Khan, E.; Lasseri, R.D.; Schuck, P. α-particle condensation: A nuclear quantum phase transition. Phys. Rev. C 2020, 102, 014305. [Google Scholar] [CrossRef]
- Qin, L.; Hagel, K.; Wada, R.; Natowitz, J.B.; Shlomo, S.; Bonasera, A.; Röpke, G.; Typel, S.; Chen, Z.; Huang, M.; et al. Laboratory Tests of Low Density Astrophysical Nuclear Equation of State. Phys. Rev. Lett. 2012, 108, 172701. [Google Scholar] [CrossRef]
- Hempel, M.; Hagel, K.; Natowitz, J.; Röpke, G.; Typel, S. Constraining supernova equation of state with equilibrium constants from heavy-ion collisions. Phys. Rev. C 2015, 91, 045805. [Google Scholar] [CrossRef]
- Pais, H.; Bougault, R.; Gulminelli, F.; Providência, C.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J.D.; Galichet, E.; Gruyer, D.; et al. Low Density In-Medium Effects on Light Clusters from Heavy-Ion Data. Phys. Rev. Lett. 2020, 125, 012701. [Google Scholar] [CrossRef]
- Pais, H.; Bougault, R.; Gulminelli, F.; Providência, C.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J.D.; Galichet, E.; Gruyer, D.; et al. Improved method for the experimental determination of in-medium effects from heavy-ion collisions. J. Phys. G Nucl. Part. Phys. 2020, 47, 105204. [Google Scholar] [CrossRef]
- Borderie, B.; Raduta, A.R.; Ademard, G.; Rivet, M.F.; De Filippo, E.; Geraci, E.; Le Neindre, N.; Alba, R.; Amorini, F.; Cardella, G.; et al. Probing clustering in excited alpha-conjugate nuclei. Phys. Lett. B 2016, 755, 475–480. [Google Scholar] [CrossRef]
- Borderie, B.; Raduta, A.R.; Ademard, G.; Rivet, M.F.; De Filippo, E.; Geraci, E.; Le Neindre, N.; Alba, R.; Amorini, F.; Cardella, G.; et al. Alpha-particle clustering in excited alpha-conjugate nuclei. J. Phys. Conf. Ser. 2017, 863, 012054. [Google Scholar] [CrossRef] [Green Version]
- Borderie, B.; Raduta, A.R.; Ademard, G.; Rivet, M.F.; De Filippo, E.; Geraci, E.; Le Neindre, N.; Cardella, G.; Lanzalone, G.; Lombardo, I.; et al. Alpha-particle clustering in excited expanding self-conjugate nuclei. EPJ Web. Conf. 2016, 117, 07014. [Google Scholar] [CrossRef] [Green Version]
- Borderie, B.; Rivet, M.F.; Tassan-Got, L. Heavy-ion peripheral collisions in the Fermi energy domain—Fragmentation processes or dissipative collisions. Ann. Phys. Fr. 1990, 15, 287–390. [Google Scholar] [CrossRef]
- Morjean, M.; Charvet, J.L.; Uzureau, J.L.; Patin, Y.; Peghaire, A.; Pranal, Y.; Sinopoli, L.; Billerey, A.; Chevarier, A.; Chevarier, N.; et al. Nuclear fragmentation processes in the 20Ne + 27Al system at 30 MeV/A. Nucl. Phys. A 1985, 438, 547–563. [Google Scholar] [CrossRef]
- Pagano, A.; Alderighi, M.; Amorini, F.; Anzalone, A.; Arena, L.; Auditore, L.; Baran, V.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; et al. Fragmentation studies with the CHIMERA detector at LNS in Catania: Recent progress. Nucl. Phys. A 2004, 734, 504–511. [Google Scholar] [CrossRef]
- Alderighi, M.; Anzalone, A.; Basssini, R.; Berceanu, I.; Blicharska, J.; Boiano, C.; Borderie, B.; Bougault, R.; Bruno, M.; Calí, C.; et al. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4pi detector. Nucl. Instr. Meth. Phys. Res. A 2002, 489, 257–265. [Google Scholar] [CrossRef]
- Le Neindre, N.; Alderighi, M.; Anzalone, A.; Barnà, R.; Bartolucci, M.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; et al. Mass and Charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes. Nucl. Instr. Meth. Phys. Res. A 2002, 490, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Eudes, P.; Basrak, Z.; Sébille, F.; De la Mota, V.; Royer, G. Comprehensive analysis of fusion data well above the barrier. Phys. Rev. C 2014, 90, 034609. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, H.L.; Mohring, K. Heavy-ion break-up processes in the Fermi energy range. Rep. Prog. Phys. 1994, 57, 231–324. [Google Scholar] [CrossRef]
- Charity, R.J.; Sobotka, L.G.; Robertson, N.J.; Sarantites, D.G.; Dinius, J.; Gelbke, C.K.; Glasmacher, T.; Handzy, D.O.; Hsi, W.C.; Huang, M.J.J.; et al. Prompt and sequential decay processes in the fragmentation of 40 MeV/nucleon 20Ne projectiles. Phys. Rev. C 1995, 52, 3126–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisa, M.A.; Gong, W.G.; Gelbke, C.K.; Lynch, W.G. Event-mixing analysis of two-proton correlation functions. Phys. Rev. C 1991, 44, 2865–2868. [Google Scholar] [CrossRef]
- Tassan-Got, L.; Stephan, C. Deep inelastic transfers: A way to dissipate energy and angular momentum for reactions in the Fermi energy domain. Nucl. Phys. A 1991, 524, 121–140. [Google Scholar] [CrossRef]
- Charity, R.J. Systematic description of evaporation spectra for light and heavy compound nuclei. Phys. Rev. C 2010, 82, 014610. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Randrup, J. Multifragmentation versus sequential fission: Observable differences? Nucl. Phys. A 1989, 491, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Marini, P.; Zheng, H.; Boisjoli, M.; Verde, G.; Chbihi, A.; Napolitani, P.; Ademard, G.; Augey, L.; Bhattacharya, C.; Borderie, B.; et al. Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems. Phys. Lett. B 2016, 756, 194–199. [Google Scholar] [CrossRef]
- Mabiala, J.; Zheng, H.; Bonasera, A.; Kohley, Z.; Yennello, S.J. Competition between fermions and bosons in nuclear matter at low densities and finite temperatures. Phys. Rev. C 2016, 94, 064617. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.G.; Kim, E.J.; Schmidt, K.; Hagel, K.; Barbui, M.; Gauthier, J.; Wuenschel, S.; Giuliani, G.; Rodriguez, M.R.D.; Kowalski, S.; et al. Examination of evidence for resonances at high excitation energy in the 7alpha disassembly of 28Si. Phys. Rev. C 2019, 99, 014606. [Google Scholar] [CrossRef] [Green Version]
- Goldhaber, A. Volume versus surface sampling of Maxwellian distributions in nuclear reactions. Phys. Rev. C 1978, 17, 2243–2244. [Google Scholar] [CrossRef] [Green Version]
Nucleus | (MeV) | (MeV) | T (MeV) | (MeV) | / |
---|---|---|---|---|---|
O | 52.4 | 15.7 | 6.15 (0.03) | 0.33 (0.03) | 0.37 (0.04) |
Ne | 67.3 | 16.7 | 6.22 (0.05) | 0.45 (0.05) | 0.36 (0.04) |
Mg | 83.5 | 17.4 | 5.92 (0.07) | 0.40 (0.07) | 0.34 (0.06) |
Si | 98.5 | 17.6 | 5.40 (0.12) | 0.37 (0.16) | 0.34 (0.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borderie, B.; Raduta, A.; De Filippo, E.; Geraci, E.; Neindre, N.L.; Cardella, G.; Lanzalone, G.; Lombardo, I.; Lopez, O.; Maiolino, C.; et al. Temperature and Density Conditions for Alpha Clustering in Excited Self-Conjugate Nuclei. Symmetry 2021, 13, 1562. https://doi.org/10.3390/sym13091562
Borderie B, Raduta A, De Filippo E, Geraci E, Neindre NL, Cardella G, Lanzalone G, Lombardo I, Lopez O, Maiolino C, et al. Temperature and Density Conditions for Alpha Clustering in Excited Self-Conjugate Nuclei. Symmetry. 2021; 13(9):1562. https://doi.org/10.3390/sym13091562
Chicago/Turabian StyleBorderie, Bernard, Adriana Raduta, Enrico De Filippo, Elena Geraci, Nicolas Le Neindre, Giuseppe Cardella, Gaetano Lanzalone, Ivano Lombardo, Olivier Lopez, Concettina Maiolino, and et al. 2021. "Temperature and Density Conditions for Alpha Clustering in Excited Self-Conjugate Nuclei" Symmetry 13, no. 9: 1562. https://doi.org/10.3390/sym13091562
APA StyleBorderie, B., Raduta, A., De Filippo, E., Geraci, E., Neindre, N. L., Cardella, G., Lanzalone, G., Lombardo, I., Lopez, O., Maiolino, C., Pagano, A., Papa, M., Pirrone, S., Rizzo, F., & Russotto, P. (2021). Temperature and Density Conditions for Alpha Clustering in Excited Self-Conjugate Nuclei. Symmetry, 13(9), 1562. https://doi.org/10.3390/sym13091562