Synchronized Cyclograms to Assess Inter-Limb Symmetry during Gait in Post-Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection and Processing
- -
- Spatio-temporal gait parameters (i.e., gait speed, cadence, stride length, stance, swing, and double support phase duration);
- -
- The dynamic range of motion (ROM) for hip and knee flexion-extension and ankle dorsi-plantarflexion, computed as the difference between the maximum and minimum angle value recorded during the gait cycle.
2.3. Inter-Limb Symmetry Quantification by Means of the Waveform-Based Method
- Cyclogram area (degrees2), defined as the area enclosed by the curve obtained from the left-right angle diagram [33]. A hypothetical symmetrical gait would lead left and right joints to assume the same angular position during the gait cycle. In this way cyclogram points would lie on a 45° line in the diagram, with a null area;
- Cyclogram orientation (degrees), expressed as the absolute value of the angular difference φ between the perfect symmetry line (45° line) and the orientation of the principal axis of inertia [30,31], which is the direction of the eigenvector of the inertial matrix for the cyclogram points in the x-y (left vs. right joint angle) reference system. Low φ angles indicate higher interlimb symmetry;
- Trend symmetry index (dimensionless), calculated to assess the similarity of two waveforms (i.e., right and left leg angular trend across the gait cycles, for each joint) by means of an eigenvector analysis. The trend symmetry value is calculated by taking the ratio of the variability about the eigenvector to the variability along the eigenvector, and is expressed as a percent. A value of 0% indicates perfect symmetry and interlimb asymmetry results in high trend symmetry values [21].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oros, R.I.; Popescu, C.A.; Iova, C.A.; Mihancea, P.; Iova, S.O. The Impact of Cognitive Impairment after Stroke on Activities of Daily Living. Hum. Vet. Med. 2016, 8, 41–44. [Google Scholar]
- Ferreira, M.G.R.; Moro, C.H.C.; Franco, S.C. Cognitive Performance after Ischaemic Stroke. Dement. Neuropsychol. 2015, 9, 165–175. [Google Scholar] [CrossRef]
- Yang, S.N. Current Evidence for Post Stroke Aphasia Treatment. Brain Neurorehabilit. 2017, 10, e15. [Google Scholar] [CrossRef]
- Mohan, D.M.; Khandoker, A.H.; Wasti, S.A.; Ismail Ibrahim Ismail Alali, S.; Jelinek, H.F.; Khalaf, K. Assessment Methods of Post-Stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front. Neurol. 2021, 12, 650024. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Evaluation of Gait Symmetry after Stroke: A Comparison of Current Methods and Recommendations for Standardization. Gait Posture 2010, 31, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Carda, S.; Cisari, C.; Invernizzi, M.; Bevilacqua, M. Osteoporosis after Stroke: A Review of the Causes and Potential Treatments. Cerebrovasc. Dis. 2009, 28, 191–200. [Google Scholar] [CrossRef]
- Brown, L.A.; Sleik, R.J.; Winder, T.R. Attentional Demands for Static Postural Control after Stroke. Arch. Phys. Med. Rehabil. 2002, 83, 1732–1735. [Google Scholar] [CrossRef]
- Pau, M.; Capodaglio, P.; Leban, B.; Porta, M.; Galli, M.; Cimolin, V. Kinematics Adaptation and Inter-Limb Symmetry during Gait in Obese Adults. Sensors 2021, 21, 5980. [Google Scholar] [CrossRef]
- Wall, C.; Turnbull, I.; Jc, W.; Gi, T. Gait Asymmetries in Residual Hemiplegia. 4. Arch. Phys. Med. Rehabil. 1986, 67, 550–553. [Google Scholar]
- Hsu, A.-L.; Tang, P.-F.; Jan, M.-H. Analysis of Impairments Influencing Gait Velocity and Asymmetry of Hemiplegic Patients after Mild to Moderate Stroke11No Commercial Party Having a Direct Financial Interest in the Results of the Research Supporting This Article Has or Will Confer a Benefit upon the Authors(s) or upon Any Organization with Which the Author(s) Is/Are Associated. Arch. Phys. Med. Rehabil. 2003, 84, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-Y.; Yang, Y.-R.; Cheng, S.-J.; Wang, R.-Y. The Relation Between Ankle Impairments and Gait Velocity and Symmetry in People With Stroke. Arch. Phys. Med. Rehabil. 2006, 87, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.K.; Parafianowicz, I.; Danells, C.J.; Closson, V.; Verrier, M.C.; Staines, W.R.; Black, S.E.; McIlroy, W.E. Gait Asymmetry in Community-Ambulating Stroke Survivors. Arch. Phys. Med. Rehabil. 2008, 89, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, S. Understanding Spatial and Temporal Gait Asymmetries in Individuals Post Stroke. Int. J. Phys. Med. Rehabil. 2014, 2, 201. [Google Scholar] [CrossRef]
- Casabona, A.; Valle, M.S.; Mangano, G.R.A.; Cioni, M. Identifying the Effects of Age and Speed on Whole-Body Gait Symmetry by Using a Single Wearable Sensor. Sensors 2022, 22, 5001. [Google Scholar] [CrossRef] [PubMed]
- Kutilek, P.; Viteckova, S.; Svoboda, Z.; Socha, V. Kinematic Quantification of Gait Asymmetry Based on Characteristics of Angle-Angle Diagrams. Acta Polytech. Hung. (APH) 2014, 11, 25–38. [Google Scholar] [CrossRef]
- Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupicka, R.; Kauler, J.; Szabo, Z. Gait Symmetry Measures: A Review of Current and Prospective Methods. Biomed. Signal Process. Control 2018, 42, 89–100. [Google Scholar] [CrossRef]
- Herzog, W.; Nigg, B.M.; Read, L.J.; Olsson, E. Asymmetries in Ground Reaction Force Patterns in Normal Human Gait: Med. Sci. Sports Exerc. 1989, 21, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The Symmetry Angle: A Novel, Robust Method of Quantifying Asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Mei, Q.; Fekete, G.; Baker, J.S.; Gu, Y. The Effect of Prolonged Running on the Symmetry of Biomechanical Variables of the Lower Limb Joints. Symmetry 2020, 12, 720. [Google Scholar] [CrossRef]
- Khan, Z.; Naseer, F.; Khan, Y.; Bilal, M.; Butt, M.A. Study of Joint Symmetry in Gait Evolution for Quadrupedal Robots Using a Neural Network. Technologies 2022, 10, 64. [Google Scholar] [CrossRef]
- Crenshaw, S.J.; Richards, J.G. A Method for Analyzing Joint Symmetry and Normalcy, with an Application to Analyzing Gait. Gait Posture 2006, 24, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and Limb Dominance in Able-Bodied Gait: A Review. Gait Posture 2000, 12, 34–45. [Google Scholar] [CrossRef]
- Pilkar, R.; Ramanujam, A.; Chervin, K.; Forrest, G.F.; Nolan, K.J. Cyclogram-Based Joint Symmetry Assessment After Utilization of a Foot Drop Stimulator During Post-Stroke Hemiplegic Gait. J. Biomech. Eng. 2018, 140, 121005. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Danial, P. A Kinematic Symmetry Index of Gait Patterns Between Older Adults With and Without Low Back Pain. Spine 2017, 42, E1350–E1356. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Schlink, B.R.; Fogg, L.F.; Foucher, K.C.; Wimmer, M.A.; Shakoor, N. Gait Asymmetries in Unilateral Symptomatic Hip Osteoarthritis and Their Association with Radiographic Severity and Pain. Hip Int. 2019, 29, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Ewins, D.; Crocombe, A.D.; Xu, W. Kinematic and Biomimetic Assessment of a Hydraulic Ankle/Foot in Level Ground and Camber Walking. PLoS ONE 2017, 12, e0180836. [Google Scholar] [CrossRef]
- Pau, M.; Leban, B.; Deidda, M.; Putzolu, F.; Porta, M.; Coghe, G.; Cocco, E. Kinematic Analysis of Lower Limb Joint Asymmetry During Gait in People with Multiple Sclerosis. Symmetry 2021, 13, 598. [Google Scholar] [CrossRef]
- Pau, M.; Galli, M.; Celletti, C.; Morico, G.; Leban, B.; Albertini, G.; Camerota, F. Plantar Pressure Patterns in Women Affected by Ehlers–Danlos Syndrome While Standing and Walking. Res. Dev. Disabil. 2013, 34, 3720–3726. [Google Scholar] [CrossRef]
- Kutilek, P.; Viteckova, S.; Svoboda, Z.; Smrcka, P. Kinematic Quantification of Gait Asymmetry in Patients with Peroneal Nerve Palsy Based on Bilateral Cyclograms.7. J. Musculoskelet. Neuronal Interact 2013, 13, 244–250. [Google Scholar]
- Goswami, A. A New Gait Parameterization Technique by Means of Cyclogram Moments: Application to Human Slope Walking. Gait Posture 1998, 8, 15–36. [Google Scholar] [CrossRef]
- Goswami, A. Kinematic Quantification of Gait Asymmetry Based on Bilateral Cyclograms. United States Patent Application No. US 2005/0004495A1, 6 January 2005. [Google Scholar]
- Grieve, D.W. Gait Patterns and the Speed of Walking. Biomed. Eng. 1968, 3, 119–122. [Google Scholar]
- Hershler, C.; Milner, M. Angle--Angle Diagrams in the Assessment of Locomotion. Am. J. Phys. Med. 1980, 59, 109–125. [Google Scholar] [PubMed]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A Gait Analysis Data Collection and Reduction Technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait Differences between Individuals with Post-Stroke Hemiparesis and Non-Disabled Controls at Matched Speeds. Gait Posture 2005, 22, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Schifino, G.; Cimolin, V.; Pau, M.; da Cunha, M.J.; Leban, B.; Porta, M.; Galli, M.; Souza Pagnussat, A. Functional Electrical Stimulation for Foot Drop in Post-Stroke People: Quantitative Effects on Step-to-Step Symmetry of Gait Using a Wearable Inertial Sensor. Sensors 2021, 21, 921. [Google Scholar] [CrossRef]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait Post-Stroke: Pathophysiology and Rehabilitation Strategies. Neurophysiol. Clin. Clin. Neurophysiol. 2015, 45, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.J.; Richards, C. Hemiparetic Gait Following Stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Li, S.; Francisco, G.E.; Zhou, P. Post-Stroke Hemiplegic Gait: New Perspective and Insights. Front. Physiol. 2018, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Aqueveque, P.; Ortega, P.; Pino, E.; Saavedra, F.; Germany, E.; Gómez, B. After Stroke Movement Impairments: A Review of Current Technologies for Rehabilitation. In Physical Disabilities—Therapeutic Implications; Tan, U., Ed.; InTech: Oxnard, CA, USA, 2017; ISBN 978-953-51-3247-9. [Google Scholar]
- von Schroeder, H.P.; Coutts, R.D.; Lyden, P.D.; Billings, E.; Nickel, V.L. Gait Parameters Following Stroke: A Practical Assessment. J. Rehabil. Res. Dev. 1995, 32, 25–31. [Google Scholar] [PubMed]
- Devetak, G.F.; Martello, S.K.; de Almeida, J.C.; Correa, K.P.; Iucksch, D.D.; Manffra, E.F. Reliability and Minimum Detectable Change of the Gait Profile Score for Post-Stroke Patients. Gait Posture 2016, 49, 382–387. [Google Scholar] [CrossRef]
- Bigoni, M.; Cimolin, V.; Vismara, L.; Tarantino, A.; Clerici, D.; Baudo, S.; Galli, M.; Mauro, A. Relationship between Gait Profile Score and Clinical Assessments of Gait in Post-Stroke Patients. J. Rehabil. Med. 2021, 53, jrm00192. [Google Scholar] [CrossRef] [PubMed]
- Connell, L.; Lincoln, N.; Radford, K. Somatosensory Impairment after Stroke: Frequency of Different Deficits and Their Recovery. Clin. Rehabil. 2008, 22, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Duysens, J.; Massaad, F. Stroke Gait Rehabilitation: Is Load Perception a First Step towards Load Control? Clin. Neurophysiol. 2015, 126, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Chia, F.S.; Kuys, S.; Low Choy, N. Sensory Retraining of the Leg after Stroke: Systematic Review and Meta-Analysis. Clin. Rehabil. 2019, 33, 964–979. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-I. Motor Function and Joint Position Sense in Relation to Gait Performance in Chronic Stroke Patients. Arch. Phys. Med. Rehabil. 2005, 86, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Kilbreath, S.L.; Refshauge, K.M. Movement Detection at the Ankle Following Stroke Is Poor. Aust. J. Physiother. 2005, 51, 19–24. [Google Scholar] [CrossRef]
- Rozanski, G.M.; Huntley, A.H.; Crosby, L.D.; Schinkel-Ivy, A.; Mansfield, A.; Patterson, K.K. Lower Limb Muscle Activity Underlying Temporal Gait Asymmetry Post-Stroke. Clin. Neurophysiol. 2020, 131, 1848–1858. [Google Scholar] [CrossRef] [PubMed]
Stroke | Control Group | |
---|---|---|
(n = 41) | (n = 48) | |
Gender, n (%) | ||
Male | 25 (60.9%) | 29 (60.4) |
Female | 16 (39.1%) | 19 (39.6%) |
Age (years) | 57.9 ± 12.8 | 54.4 ± 12.5 |
Height (m) | 1.69 ± 0.07 | 1.68 ± 0.08 |
Body mass (kg) | 77.21 ±16.31 | 67.92 ± 11.68 |
Time since stroke (years) | 4.6 (1.8) | |
Stroke type, n (%) | ||
Ischemic | 31 (75.6) | |
Hemorrhagic | 10 (24.4) | |
Affected hemisphere, n (%) | ||
Right | 20 (48.8) | |
Left | 21 (51.2) |
Stroke | Control Group | |
---|---|---|
Gait speed (m s−1) | 0.55 ± 0.18 * | 1.23 ± 0.19 |
Stride length (m) | 0.79 ± 0.24 * | 1.31 ± 0.11 |
Cadence (steps min−1) | 79.9 ± 21.5 * | 111.6 ± 10.7 |
Stance phase (% of the gait cycle) | 67.36 ± 5.73 * | 59.49 ± 1.73 |
Swing phase (% of the gait cycle) | 32.63 ± 5.73 * | 40.41 ± 1.46 |
Double support (% of the gait cycle) | 33.17 ± 13.58 * | 19.58 ± 3.08 |
Stroke | Control Group | |||
---|---|---|---|---|
Plegic Side | Non Plegic Side | |||
ROM (°) | Hip | 31.62 ± 10.30 * | 39.06 ± 5.84 * | 45.88 ± 4.57 |
Knee | 36.94 ± 16.85 * | 52.80 ± 9.19 * | 59.76 ± 4.27 | |
Ankle | 17.92 ± 7.11 * | 25.03 ± 8.15 * | 28.60 ± 6.02 |
Parameter | Joint | Stroke | Control Group |
---|---|---|---|
Cyclogram area (degrees2) | Hip | 248.23 ± 241.47 * | 96.79 ± 84.74 |
Cyclogram orientation ϕ (degrees) | 12.08 ± 14.92 * | 1.63± 1.24 | |
Trend Symmetry | 14.38 ± 21.09 * | 1.66 ± 1.26 | |
Cyclogram area (degrees2) | Knee | 474.05 ± 356.90 * | 273.43 ± 177.67 |
Cyclogram orientation ϕ (degrees) | 12.89 ± 12.83 * | 1.37 ± 1.39 | |
Trend Symmetry | 15.85 ± 13.51 * | 1.35 ± 1.39 | |
Cyclogram area (degrees2) | Ankle | 98.68 ± 69.07 * | 67.84 ± 49.72 |
Cyclogram orientation ϕ (degrees) | 15.48 ± 12.87 * | 3.17 ± 2.95 | |
Trend Symmetry | 18.65 ± 16.63 * | 2.89 ± 2.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrone, F.; Pau, M.; Vismara, L.; Porta, M.; Bigoni, M.; Leban, B.; Cerfoglio, S.; Galli, M.; Mauro, A.; Cimolin, V. Synchronized Cyclograms to Assess Inter-Limb Symmetry during Gait in Post-Stroke Patients. Symmetry 2022, 14, 1560. https://doi.org/10.3390/sym14081560
Marrone F, Pau M, Vismara L, Porta M, Bigoni M, Leban B, Cerfoglio S, Galli M, Mauro A, Cimolin V. Synchronized Cyclograms to Assess Inter-Limb Symmetry during Gait in Post-Stroke Patients. Symmetry. 2022; 14(8):1560. https://doi.org/10.3390/sym14081560
Chicago/Turabian StyleMarrone, Flavia, Massimiliano Pau, Luca Vismara, Micaela Porta, Matteo Bigoni, Bruno Leban, Serena Cerfoglio, Manuela Galli, Alessandro Mauro, and Veronica Cimolin. 2022. "Synchronized Cyclograms to Assess Inter-Limb Symmetry during Gait in Post-Stroke Patients" Symmetry 14, no. 8: 1560. https://doi.org/10.3390/sym14081560
APA StyleMarrone, F., Pau, M., Vismara, L., Porta, M., Bigoni, M., Leban, B., Cerfoglio, S., Galli, M., Mauro, A., & Cimolin, V. (2022). Synchronized Cyclograms to Assess Inter-Limb Symmetry during Gait in Post-Stroke Patients. Symmetry, 14(8), 1560. https://doi.org/10.3390/sym14081560