Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm
Abstract
:1. Introduction
- An elite ant colony (EACO) algorithm is proposed, in which the decisive factor is introduced into the state transition equation to offset the error caused by the positive feedback system, and the attenuation factor is added to the pheromone update strategy to prevent the algorithm from falling into local optimum.
- Combining the B-spline curve with the improved EACO, the elite smoothing ant colony (ESACO) algorithm is proposed, where the smoothing strategy is applied to reduce unnecessary traversals in the search process and generate efficient paths.
- The performance of the three algorithms before and after the improvement is compared, and the results show that the ESACO algorithm generates shorter and smoother routes with higher convergence and reliability.
- Physical experiments are conducted using RobotStudio software, and the results are verified.
2. Problem Statement and Environment Description
2.1. Problem Definition and Formulation
- Assume that there are three static obstacles in the working environment;
- The starting and ending positions of the mechanical arm movement are known;
- The dimensions of the parts are within the clamping range of the mechanical arm;
- The equipment parts have been arranged in order in advance.
2.2. Manipulator and Environment Description
3. Algorithm Design
3.1. Ant Colony Algorithm
3.2. Elite Smoothing Ant Colony Optimization
3.2.1. Improvement of State Transition Probability
3.2.2. Optimization of the Pheromone Update Strategy
3.2.3. Trajectory Optimization
3.3. The Global Path Planning Process of the ESACO Algorithm
Algorithm 1 Pseudo-code for ESACO-based path planning | |
1: | procedure ESACO |
2: | Build environment model; |
3: | Set the size and location of obstacles, starting point and ending point ; |
4: | Initialize the number of ants m, the maximum number of iterations , weights and the new parameters ; |
5: | for do |
6: | Put all ants into the |
7: | while ant does not reach do |
8: | ← the set of reachable grids for |
9: | Select the next grid by Equation (14) |
10: | end while |
11: | if all ants have arrived then |
12: | ← path length of ant |
13: | ← the best path in this iteration |
14: | Update the global pheromone by Equations (15) and (16) |
15: | if the fitness is optimal then |
16: | best-fitness ← minimum fitness value |
17: | Best-Fitness ← record the change of fitness values |
18: | end if |
19: | end if |
20: | end for |
21: | Output optimal path and optimal fitness values |
22: | Smoothing the optimal path by Equations (17)–(19) |
23: | end procedure |
4. Simulations and Analysis
4.1. Simulation Results and Performance Comparison
- (1)
- Path length/cm: The path length directly affects the total energy consumption of the mechanical arm and the best performance of the algorithm.
- (2)
- Running time/s: The running time of the program is a prominent indicator of the efficiency of the algorithm.
- (3)
- Collision detection: The collision relationship between the path and the obstacles determines whether the mechanical arm can continue moving. If there is a collision, the path planning will be invalid. If there is no collision, the action can be followed up.
4.2. Analysis of the Best Simulation Results of Three Algorithms
5. System Design and Experimental Discussions
5.1. System Design of the Gripping Mechanical Arm
5.2. Experimental Verification
5.3. Experiments in Different Scenarios
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.; Peng, G.; Meng, Y. A modified Q-learning algorithm for robot path planning in a digital twin assembly system. Int. J. Adv. Manuf. Technol. 2022, 119, 3951–3961. [Google Scholar] [CrossRef]
- Liu, Y.; Er, M.J.; Guo, C. Online time-optimal path and trajectory planning for robotic multipoint assembly. Assem. Autom. 2021, 41, 601–611. [Google Scholar] [CrossRef]
- Kobayashi, M.; Motoi, N. Local Path Planning: Dynamic Window Approach with Virtual Manipulators Considering Dynamic Obstacles. IEEE Access 2022, 10, 17018–17029. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W. Multi-Robot Path Planning with Due Times. IEEE Robot. Autom. Lett. 2022, 7, 4829–4836. [Google Scholar] [CrossRef]
- Chai, X.; Gao, F.; Qi, C.K.; Pan, Y.; Xu, Y.L.; Zhao, Y. Obstacle avoidance for a hexapod robot in unknown environment. Sci. China Technol. Sci. 2017, 60, 818–831. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Xia, Z.; Gu, X. A survey of welding robot intelligent path optimization. J. Manuf. Process. 2021, 63, 14–23. [Google Scholar] [CrossRef]
- Xu, L.; Cao, M.; Song, B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm. Neurocomputing 2022, 473, 98–106. [Google Scholar] [CrossRef]
- Patle, B.K.; Babu, L.G.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Li, Z.; Dankelman, J. Path planning for endovascular catheterization under curvature constraints via two-phase searching approach. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 619–627. [Google Scholar] [CrossRef]
- Wang, W.-C.; Ng, C.-Y.; Chen, R. Vision-Aided Path Planning Using Low-Cost Gene Encoding for a Mobile Robot. Intell. Autom. Soft Comput. 2022, 32, 991–1006. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.J.; Li, Y.F. Mobile Robot Path Planning Based on Improved Localized Particle Swarm Optimization. IEEE Sens. J. 2021, 21, 6962–6972. [Google Scholar] [CrossRef]
- Liu, J.H.; Yang, J.G.; Liu, H.P.; Tian, X.J.; Gao, M. An improved ant colony algorithm for robot path planning. Soft Comput. 2017, 21, 5829–5839. [Google Scholar] [CrossRef]
- Yang, L.; Fu, L.; Li, P.; Mao, J.; Guo, N.; Du, L. LF-ACO: An effective formation path planning for multi-mobile robot. Math. Biosci. Eng. 2022, 19, 225–252. [Google Scholar] [CrossRef]
- Luo, M.; Hou, X.R.; Yang, S.X. A Multi-Scale Map Method Based on Bioinspired Neural Network Algorithm for Robot Path Planning. IEEE Access 2019, 7, 142682–142691. [Google Scholar] [CrossRef]
- Ma, N.; Wang, J.; Liu, J.; Meng, M.Q.H. Conditional Generative Adversarial Networks for Optimal Path Planning. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 662–671. [Google Scholar] [CrossRef]
- Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment. IEEE Trans. Ind. Electron. 2021, 68, 7244–7251. [Google Scholar] [CrossRef]
- Lyu, D.; Chen, Z.; Cai, Z.; Piao, S. Robot path planning by leveraging the graph-encoded Floyd algorithm. Future Gener. Comput. Syst. 2021, 122, 204–208. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, H.M.; Zou, L.; Li, G.Y.; Yang, X.H.; Wu, D.Q. A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 2017, 21, 4387–4398. [Google Scholar] [CrossRef]
- Yu, J.; You, X.M.; Liu, S. Ant colony algorithm based on magnetic neighborhood and filtering recommendation. Soft Comput. 2021, 25, 8035–8050. [Google Scholar] [CrossRef]
- Miao, C.W.; Chen, G.Z.; Yan, C.L.; Wu, Y.Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Ind. Eng. 2021, 156, 107230. [Google Scholar] [CrossRef]
- Sangeetha, V.; Krishankumar, R.; Ravichandran, K.S.; Cavallaro, F.; Kar, S.; Pamucar, D.; Mardani, A. A Fuzzy Gain-Based Dynamic Ant Colony Optimization for Path Planning in Dynamic Environments. Symmetry 2021, 13, 280. [Google Scholar] [CrossRef]
- Jiao, Z.Q.; Ma, K.; Rong, Y.L.; Wang, P.; Zhang, H.K.; Wang, S.H. A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs. J. Comput. Sci. 2018, 25, 50–57. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Muller, F.M.; Yang, S.X. Ant Colony Optimization with Local Search for Dynamic Traveling Salesman Problems. IEEE Trans. Cybern. 2017, 47, 1743–1756. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Tang, C.; Cai, W. Research on Dynamic Path Planning Based on the Fusion Algorithm of Improved Ant Colony Optimization and Rolling Window Method. IEEE Access 2022, 10, 28322–28332. [Google Scholar] [CrossRef]
- Xiong, C.K.; Chen, D.F.; Lu, D.; Zeng, Z.; Lian, L. Path planning of multiple autonomous marine vehicles for adaptive sampling using Voronoi-based ant colony optimization. Robot. Auton. Syst. 2019, 115, 90–103. [Google Scholar] [CrossRef]
- Yang, H.; Qi, J.; Miao, Y.C.; Sun, H.X.; Li, J.H. A New Robot Navigation Algorithm Based on a Double-Layer Ant Algorithm and Trajectory Optimization. IEEE Trans. Ind. Electron. 2019, 66, 8557–8566. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, S.W. Smooth path and velocity planning under 3D path constraints for car-like vehicles. Robot. Auton. Syst. 2018, 107, 87–99. [Google Scholar] [CrossRef]
- Rath, A.K.; Parhi, D.R.; Das, H.C.; Muni, M.K.; Kumar, P.B. Analysis and use of fuzzy intelligent technique for navigation of humanoid robot in obstacle prone zone. Def. Technol. 2018, 14, 677–682. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, Z.F.; Li, H. An eikonal equation based path planning method using polygon decomposition and curve evolution. Def. Technol. 2020, 16, 1001–1018. [Google Scholar] [CrossRef]
- Patle, B.K.; Pandey, A.; Jagadeesh, A.; Parhi, D.R. Path planning in uncertain environment by using firefly algorithm. Def. Technol. 2018, 14, 691–701. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Lin, Y.; Wang, F.; Cao, Q. Automatic ultrasound scanning robotic system with optical waveguide-based force measurement. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1015–1025. [Google Scholar] [CrossRef]
- Dai, P.; Yao, S.; Li, Z.; Zhang, S.; Cao, X. ACE: Anchor-Free Corner Evolution for Real-Time Arbitrarily-Oriented Object Detection. IEEE Trans. Image Process. 2022, 31, 4076–4089. [Google Scholar] [CrossRef]
- Qi, X.; Gan, Z.; Liu, C.; Xu, Z.; Zhang, X.; Li, W. Collective intelligence evolution using ant colony optimization and neural networks. Neural Comput. Appl. 2021, 33, 12721–12735. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, H.B.; Zheng, Y.; He, J.C. Research on path planning of mobile robot based on improved ant colony algorithm. Neural Comput. Appl. 2020, 32, 1555–1566. [Google Scholar] [CrossRef]
- Majeed, A.; Abbas, M.; Sittar, A.A.; Misro, M.Y.; Kamran, M. Airplane designing using Quadratic Trigonometric B-spline with shape parameters. AIMS Math. 2021, 6, 7669–7683. [Google Scholar] [CrossRef]
- Elbanhawi, M.; Simic, M.; Jazar, R. Improved manoeuvring of autonomous passenger vehicles: Simulations and field results. J. Vib. Control 2017, 23, 1954–1983. [Google Scholar] [CrossRef]
- Cao, X.M.; Zou, X.J.; Jia, C.Y.; Chen, M.Y.; Zeng, Z.Q. RRT-based path planning for an intelligent litchi-picking manipulator. Comput. Electron. Agric. 2019, 156, 105–118. [Google Scholar] [CrossRef]
- Liao, S.L.; Zhu, R.M.; Wu, N.Q.; Shaikh, T.A.; Sharaf, M.; Mostafa, A.M. Path planning for moving target tracking by fixed-wing UAV. Def. Technol. 2020, 16, 811–824. [Google Scholar] [CrossRef]
- Urrea, C.; Kern, J. Design and implementation of a wireless control system applied to a 3-DoF redundant robot using Raspberry Pi interface and User Datagram Protocol. Comput. Electr. Eng. 2021, 95, 107424. [Google Scholar] [CrossRef]
- Siewe, R.T.; Domguia, U.S.; Woafo, P. Generation of pulse-like and bursting-like oscillations from nonlinear systems using embedded technologies and applications to excite mechanical arms. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 343–359. [Google Scholar] [CrossRef]
- Ohkawa, T.; Yamashina, K.; Kimura, H.; Ootsu, K.; Yokota, T. FPGA Components for Integrating FPGAs into Robot Systems. IEICE Trans. Inf. Syst. 2018, E101D, 363–375. [Google Scholar] [CrossRef] [Green Version]
Parameters | Description |
---|---|
The total length of the path | |
The distance between point i and the nearest obstacle o | |
The size of equipment parts | |
Minimum and maximum range of end grippers | |
Energy consumption of the mechanical arm a to move from point i to j | |
Maximum energy consumption of the mechanical arm | |
The weight of equipped parts | |
The maximum load of the mechanical arm | |
The maximum radius of operation of the mechanical arm | |
The position of mechanical arm | |
The variable of points i and j on the path to the mechanical arm | |
The distance between points i and j on the path to the mechanical arm |
Numbers | Indicators | Parameters |
---|---|---|
1 | Maximum loads | 3 kg |
2 | Repeat positioning accuracy | ±0.01 mm |
3 | Maximum working radius | 580 mm |
4 | Weight of the machine | 25 kg |
5 | Arm loads | 0.3 kg |
6 | Maximum speed of grabbing 1 kg items | 6.2 m/s |
7 | Maximum acceleration for grabbing 1 kg items | 28 m/s2 |
Linkage i | |||||
---|---|---|---|---|---|
1 | q1 | 335 | 40 | 90 | −170 to 170 |
2 | q2 | 0 | 280 | 0 | −70 to 120 |
3 | q3 | 0 | 70 | 90 | −110 to 70 |
4 | q4 | 313 | 0 | −90 | −180 to 180 |
5 | q5 | 0 | 0 | 90 | −120 to 120 |
6 | q6 | 81 | 0 | 0 | −360 to 360 |
Number | ACO | EACO | ESACO | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | |
1 | 77.578 | 5.88 | 1 | 59.715 | 4.94 | 0 | 52.604 | 3.68 | 0 |
2 | 71.360 | 5.97 | 1 | 59.417 | 5.00 | 1 | 51.640 | 3.74 | 0 |
3 | 66.419 | 6.04 | 1 | 56.471 | 5.08 | 1 | 46.402 | 3.85 | 1 |
4 | 65.941 | 5.80 | 1 | 64.170 | 5.16 | 1 | 51.686 | 3.93 | 1 |
5 | 65.251 | 6.04 | 1 | 60.892 | 5.22 | 0 | 52.141 | 3.91 | 0 |
6 | 53.940 | 6.15 | 0 | 57.029 | 5.00 | 0 | 50.338 | 3.79 | 0 |
7 | 67.345 | 5.70 | 0 | 57.299 | 4.70 | 0 | 49.065 | 3.73 | 0 |
8 | 65.769 | 5.89 | 0 | 63.915 | 4.93 | 0 | 54.120 | 3.66 | 0 |
9 | 58.946 | 5.77 | 0 | 61.429 | 5.21 | 1 | 52.596 | 3.76 | 1 |
10 | 67.966 | 5.93 | 1 | 58.223 | 4.81 | 1 | 48.880 | 3.80 | 0 |
11 | 56.137 | 5.87 | 0 | 60.055 | 4.87 | 0 | 52.369 | 3.93 | 0 |
12 | 69.015 | 5.84 | 1 | 63.581 | 5.11 | 0 | 56.266 | 3.93 | 0 |
13 | 67.211 | 6.12 | 1 | 55.239 | 4.83 | 1 | 46.398 | 3.92 | 1 |
14 | 60.441 | 5.88 | 0 | 49.596 | 4.86 | 0 | 42.020 | 3.83 | 0 |
15 | 56.629 | 5.57 | 0 | 62.153 | 5.19 | 0 | 50.596 | 4.01 | 0 |
Method | Path Length | Running Time | |||
---|---|---|---|---|---|
Min. Path Length/cm | Average Path Length/cm | Standard Deviation | Average Running Time/s | Standard Deviation | |
ACO | 53.940 | 64.663 | 6.133 | 5.897 | 0.150 |
EACO | 49.596 | 59.279 | 3.726 | 4.994 | 0.158 |
ESACO | 42.020 | 50.475 | 3.409 | 3.831 | 0.101 |
Method | Optimal Obstacle Avoidance Path | Convergence Curve |
---|---|---|
ACO | ||
EACO | ||
ESACO |
Method | Min. Path Length/cm | Average Running Time/s | Successful Times | Total Energy/J | |
---|---|---|---|---|---|
Scenario 1 | ACO | 67.354 | 8.012 | 11 | 726.298 |
EACO | 52.681 | 6.584 | 12 | 668.594 | |
ESACO | 49.323 | 5.746 | 14 | 596.261 | |
Scenario 2 | ACO | 89.252 | 8.623 | 12 | 823.154 |
EACO | 80.541 | 7.258 | 13 | 769.329 | |
ESACO | 68.422 | 6.567 | 14 | 630.468 |
Method | Scenario 1 | Scenario 2 | ||
---|---|---|---|---|
Optimization Performance | Robustness | Optimization Performance | Robustness | |
GA | 0.169 | 2.943 | 0.203 | 2.477 |
PSO | 0.198 | 1.781 | 0.192 | 1.449 |
GWO | 0.122 | 1.154 | 0.216 | 2.396 |
WOA | 0.167 | 1.352 | 0.178 | 2.134 |
EACO | 0.017 | 1.069 | 0.141 | 1.022 |
ESACO | 0.094 | 0.536 | 0.109 | 1.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Zhu, X. Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm. Symmetry 2022, 14, 1843. https://doi.org/10.3390/sym14091843
Meng X, Zhu X. Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm. Symmetry. 2022; 14(9):1843. https://doi.org/10.3390/sym14091843
Chicago/Turabian StyleMeng, Xiaoling, and Xijing Zhu. 2022. "Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm" Symmetry 14, no. 9: 1843. https://doi.org/10.3390/sym14091843
APA StyleMeng, X., & Zhu, X. (2022). Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm. Symmetry, 14(9), 1843. https://doi.org/10.3390/sym14091843