Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space
Abstract
:1. Introduction
2. Preliminaries
3. Timelike Sweeping Surface
- (1)
- The s-parameter curve is also a geodesic on M if
- (2)
- The s-parameter curve is also an asymptotic curve on M if
- (1)
- The s-parameter curve is a also geodesic if ; that is,
- (2)
- The s-parameter curve is also an asymptotic curve on M if ; that is,
- (1)
- The parameter curve cannot be also a geodesic on M;
- (2)
- The parameter curve is also an asymptotic curve on M if
- (1)
- Since and , the parameter curve cannot be also a geodesic on M;
- (2)
- The parameter curve is also an asymptotic curve on M if ; that is,
3.1. Lorentzian Height Functions
- (a)
- β is a slant helix if and only if is constant;
- (b)
- is a part of a circle on whose center is the spacelike constant vector
- (a)
- Suppose that . Hence, we can write
- (b)
- Suppose that . Since
3.2. Unfolding of Functions by One-Variable
- (a)
- If , then is locally diffeomorphic to , and ;
- (b)
- If , then is locally diffeomorphic to and is locally diffeomorphic to ;
- (c)
- If , then is locally diffeomorphic to and is locally diffeomorphic to .
- (i)
- If has the -singularity at , then . Therefore, the matrix of coefficients is:
- (ii)
- If has the -singularity at , then and by Proposition 1:
3.3. Timelike Developable Surfaces and Singularities
- (1)
- (resp. ) is locally diffeomorphic to the cuspidal edge CE at if , and ;
- (2)
- (resp. ) is locally diffeomorphic to the swallowtail SW at if and .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bükcu, B.; Karacan, M.K. On the slant helices according to Bishop frame of the timelike curve in Lorentzian space. Tamkang J. Math. 2008, 39, 255–262. [Google Scholar] [CrossRef]
- Bruce, J.W.; Giblin, P.J. Curves and Singularities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Saji, K.; Umehara, M.; Yamada, K. The geometry of fronts. Ann. Math. 2009, 169, 491–529. [Google Scholar] [CrossRef]
- Teramoto, K. Parallel and dual surfaces of cuspidal edges. Differ. Geom. Appl. 2016, 44, 52–62. [Google Scholar] [CrossRef]
- Ro, J.S.; Yoon, D.W. Tubes of weingarten types in Euclidean 3-space. J. Chungcheong Math. Soc. 2009, 22, 359–366. [Google Scholar] [CrossRef]
- Cui, L.; Wang, D.L.; Dai, J.S. Kinematic geometry of circular surfaces with a fixed radius based on Euclidean invariants. ASME J. Mech. 2009, 131, 101009. [Google Scholar] [CrossRef]
- Keskin, O.; Yayli, Y. An application of N-Bishop frame to spherical images for direction curves. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750162. [Google Scholar] [CrossRef]
- Izumiya, S.; Saji, K.; Takeuchi, N. Circular surfaces. Adv. Geom. 2007, 7, 295–313. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, R.S. Analytic and algebraic properties of canal surfaces. J. Comput. Appl. Math. 2006, 195, 220–228. [Google Scholar] [CrossRef]
- Bishop, R.L. There is more than one way to frame a curve. Am. Math. Mon. 1975, 82, 246–251. [Google Scholar] [CrossRef]
- Klok, F. Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 1986, 3, 217–229. [Google Scholar] [CrossRef]
- Farouki, R.T.; Giannelli, C.; Sampoli, M.L. Rotation-minimizing osculating frames. Comput. Aided Geom. Des. 2011, 31, 27–34. [Google Scholar] [CrossRef]
- Wang, W.; Joe, B. Robust computation of the rotation minimizing frame for sweep surface modelling. Comput. Aided Des. 1997, 29, 1997. [Google Scholar] [CrossRef]
- Wang, W.; Jüttler, B.; Zheng, D.; Liu, Y. Computation of rotating minimizing frames. ACM Trans. Graph. 2008, 27, 2008. [Google Scholar] [CrossRef]
- Grbovic, M.; Nešovic, E. On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space. J. Math. Anal. Appl. 2018, 461, 219–233. [Google Scholar] [CrossRef]
- Li, Y.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077–12090. [Google Scholar] [CrossRef]
- Li, Y.; Khatri, M.; Singh, J.P.; Chaubey, S.K. Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms. Axioms 2022, 11, 324. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Agrawal, R.P.; Ali, A. Reilly-type inequality for the ϕ-Laplace operator on semislant submanifolds of Sasakian space forms. J. Inequal. Appl. 2022, 1, 102. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Dey, S.; Roy, S.; Ali, A. General Relativistic Space-Time with η1-Einstein Metrics. Mathematics 2022, 10, 2530. [Google Scholar] [CrossRef]
- Li, Y.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 574–589. [Google Scholar] [CrossRef]
- Li, Y.; Uçum, A.; İlarslan, K.; Camcı, Ç. A New Class of Bertrand Curves in Euclidean 4-Space. Symmetry 2022, 14, 1191. [Google Scholar] [CrossRef]
- Li, Y.; Şenyurt, S.; Özduran, A.; Canlı, D. The Characterizations of Parallel q-Equidistant Ruled Surfaces. Symmetry 2022, 14, 1879. [Google Scholar] [CrossRef]
- Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu manifolds admitting η-Ricci solitons and spacetime. J. Math. 2022, 2022, 6605127. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914. [Google Scholar] [CrossRef]
- Li, Y.; Alluhaibi, N.; Abdel-Baky, R.A. One-Parameter Lorentzian Dual Spherical Movements and Invariants of the Axodes. Symmetry 2022, 14, 1930. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. Simultaneous characterizations of partner ruled surfaces using Flc frame. AIMS Math. 2022, 7, 20213–20229. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, Y.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 176, 104513. [Google Scholar] [CrossRef]
- Gür, S.; Şenyurt, S.; Grilli, L. The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space. Symmetry 2022, 14, 1062. [Google Scholar]
- Çalışkan, A.; Şenyurt, S. Curves and ruled surfaces according to alternative frame in dual space. Commun. Fac. Sci. Univ. 2020, 69, 684–698. [Google Scholar] [CrossRef]
- Çalışkan, A.; Şenyurt, S. The dual spatial quaternionic expression of ruled surfaces. Therm. Sci. 2019, 23, 403–411. [Google Scholar] [CrossRef]
- Şenyurt, S.; Çalışkan, A. The quaternionic expression of ruled surfaces. Filomat 2018, 32, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Şenyurt, S.; Gür, S. Spacelike surface geometry. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1750118. [Google Scholar] [CrossRef]
- As, E.; Şenyurt, S. Some Characteristic Properties of Parallel-Equidistant Ruled Surfaces. Math. Probl. Eng. 2013, 2013, 587289. [Google Scholar] [CrossRef]
- Özcan, B.; Şenyurt, S. On Some Characterizations of Ruled Surface of a Closed Timelike Curve in Dual Lorentzian Space. Adv. Appl. Clifford Al. 2012, 22, 939–953. [Google Scholar]
- Antić, M.; Moruz, M.; Van, J. H-Umbilical Lagrangian Submanifolds of the Nearly Kähler 𝕊3 × 𝕊3. Mathematics 2020, 8, 1427. [Google Scholar] [CrossRef]
- Antić, M.; Djordje, K. Non-Existence of Real Hypersurfaces with Parallel Structure Jacobi Operator in S6(1). Mathematics 2022, 10, 2271. [Google Scholar] [CrossRef]
- Antić, M. Characterization of Warped Product Lagrangian Submanifolds in ℂn. Results Math. 2022, 77, 1–15. [Google Scholar] [CrossRef]
- Antić, M.; Vrancken, L. Conformally flat, minimal, Lagrangian submanifolds in complex space forms. Sci. China Math. 2022, 65, 1641–1660. [Google Scholar] [CrossRef]
- Antić, M.; Hu, Z.; Moruz, M.; Vrancken, L. Surfaces of the nearly Kähler 𝕊3 × 𝕊3 preserved by the almost product structure. Math. Nachr. 2021, 294, 2286–2301. [Google Scholar] [CrossRef]
- Antić, M. A class of four-dimensional CR submanifolds in six dimensional nearly Kähler manifolds. Math. Slovaca 2018, 68, 1129–1140. [Google Scholar] [CrossRef]
- Antić, M. A class of four dimensional CR submanifolds of the sphere S6(1). J. Geom. Phys. 2016, 110, 78–89. [Google Scholar] [CrossRef]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Todorčević, V. Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys. 2019, 9, 1211–1225. [Google Scholar] [CrossRef]
- Kojić, V.; Pavlović, M. Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008, 342, 742–746. [Google Scholar] [CrossRef]
- Kojić, V. Quasi-nearly subharmonic functions and conformal mappings. Filomat 2007, 21, 243–249. [Google Scholar] [CrossRef]
- Manojlović, V.; Vuorinen, M. On quasiconformal maps with identity boundary values. Trans. Am. Math. Soc. 2011, 363, 2367–2479. [Google Scholar] [CrossRef]
- Manojlović, V. On bilipschicity of quasiconformal harmonic mappings. Novi Sad J. Math. 2015, 45, 105–109. [Google Scholar] [CrossRef]
- Manojlović, V. Bilipschitz mappings between sectors in planes and quasi-conformality. Funct. Anal. Approx. Comput. 2009, 1, 1–6. [Google Scholar]
- Manojlović, V. Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat 2009, 23, 85–89. [Google Scholar] [CrossRef]
- Manojlović, V. On conformally invariant extremal problems. Appl. Anal. Discret. Math. 2009, 3, 97–119. [Google Scholar] [CrossRef]
- Jäntschi, L. Introducing Structural Symmetry and Asymmetry Implications in Development of Recent Pharmacy and Medicine. Symmetry 2022, 14, 1674. [Google Scholar]
- Jäntschi, L. Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples. Symmetry 2022, 14, 1104. [Google Scholar] [CrossRef]
- Jäntschi, L. Formulas, Algorithms and Examples for Binomial Distributed Data Confidence Interval Calculation: Excess Risk, Relative Risk and Odds Ratio. Mathematics 2021, 9, 2506. [Google Scholar] [CrossRef]
- Donatella, B.; Jäntschi, L. Comparison of Molecular Geometry Optimization Methods Based on Molecular Descriptors. Mathematics 2021, 9, 2855. [Google Scholar]
- Mihaela, T.; Jäntschi, L.; Doina, R. Figures of Graph Partitioning by Counting, Sequence and Layer Matrices. Mathematics 2021, 9, 1419. [Google Scholar]
- Kumar, S.; Kumar, D.; Sharma, J.R.; Jäntschi, L. A Family of Derivative Free Optimal Fourth Order Methods for Computing Multiple Roots. Symmetry 2020, 12, 1969. [Google Scholar] [CrossRef]
- Deepak, K.; Janak, R.; Jäntschi, L. A Novel Family of Efficient Weighted-Newton Multiple Root Iterations. Symmetry 2020, 12, 1494. [Google Scholar]
- Janak, R.; Sunil, K.; Jäntschi, L. On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence. Mathematics 2020, 8, 1091. [Google Scholar]
- Jäntschi, L. Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions. Mathematics 2020, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Deepak, K.; Janak, R.; Jäntschi, L. Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method. Mathematics 2019, 7, 919. [Google Scholar]
- Gulbahar, M.; Kilic, E.; Keles, S.; Tripathi, M.M. Some basic inequalities for submanifolds of nearly quasi-constant curvature manifolds. Differ. Geom. Dyn. Sys. 2014, 16, 156–167. [Google Scholar]
- Tripathi, M.M.; Gülbahar, M.; Kiliç, E.; Keleş, S. Inequalities for scalar curvature of pseudo-Riemannian submanifolds. J. Geom. Phys. 2017, 112, 74–84. [Google Scholar] [CrossRef]
- Gulbahar, M. Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Math. 2021, 6, 1366–1377. [Google Scholar] [CrossRef]
- Kiliç, E.; Gulbahar, M.; Kavuk, E. Concurrent Vector Fields on Lightlike Hypersurfaces. Mathematics 2020, 9, 59. [Google Scholar] [CrossRef]
- Gulbahar, M.; Kiliç, E.; Keles, S. A useful orthonormal basis on bi-slant submanifolds of almost Hermitian manifolds. Tamkang J. Math. 2016, 47, 143–161. [Google Scholar] [CrossRef]
- O’Neil, B. Semi-Riemannian Geometry Geometry, with Applications to Relativity; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Walfare, J. Curves and Surfaces in Minkowski Space. Ph.D. Thesis, K.U. Leuven, Faculty of Science, Leuven, Belgium, 1995. [Google Scholar]
- Mofarreh, F.; Abdel-Baky, R.A.; Alluhaii, N. Spacelike sweeping surfaces and singularities in Minkowski 3-Space. Math. Probl. Eng. 2021, 2021, 5130941. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Nazra, S.H.; Abdel-Baky, R.A. Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space. Symmetry 2022, 14, 1996. https://doi.org/10.3390/sym14101996
Li Y, Nazra SH, Abdel-Baky RA. Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space. Symmetry. 2022; 14(10):1996. https://doi.org/10.3390/sym14101996
Chicago/Turabian StyleLi, Yanlin, Sahar H. Nazra, and Rashad A. Abdel-Baky. 2022. "Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space" Symmetry 14, no. 10: 1996. https://doi.org/10.3390/sym14101996