Fractional Landweber Iterative Regularization Method for Solving the Inverse Problem of Time-Fractional Schrödinger Equation
Abstract
:1. Introduction
2. The Solution of Problem (1) and Ill-Posed Analysis
3. Preliminary Results and Optimal Error Bound for Problem (1)
3.1. Preliminary Results
- (i)
- Optimal on the set if ;
- (ii)
- Order optimal on the set if with .
- (i)
- ;
- (ii)
- φ is a strictly monotone increasing function on ;
- (iii)
- is convex.
3.2. The Optimal Error Bound for Problem (1)
4. The Fractional Landweber Iterative Regularization Method and Its Error Estimation
4.1. The Error Estimate with a Priori Parameter Choice
4.2. The Error Estimate with a Posteriori Parameter Choice
- (a)
- is a continuous function;
- (b)
- (c)
- ;
- (d)
- is a strictly decreasing function for any .
5. Numerical Implementation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fine, D.S.; Stephen, S. Path integrals, supersymmetric quantum mechanics, and the atiyah-singer index theorem for twisted dirac. J. Math. Phys. 2017, 58, 012102. [Google Scholar] [CrossRef]
- Naber, M. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Berezin, F.A.; Shubin, M.A. The Schrödinger equation. Math. Comput. Simulat. 1992, 34, 88–89. [Google Scholar]
- Baudouin, L.; Puel, J.P. Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Prob. 2007, 18, 1537. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equation. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Sun, H.G.; Chen, W.; Liang, Y.J.; Hu, S. Fractional derivative anomalous diffusion equation modeling prime number distribution. Fract. Calc. Appl. Anal. 2015, 18, 154–157. [Google Scholar]
- Ricardo, A. A caputo fractional derivative of a function with respect to another function. Commun. Nonlinear. Sci. 2017, 44, 460–481. [Google Scholar]
- Wei, Z.l.; Dong, W.; Che, J.L. Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. Nonlinear. Anal. 2010, 73, 3232–3238. [Google Scholar] [CrossRef]
- Zemliak, A.M. Analog system design problem formulation by optimum control theory. Ieice T. Fund. Electr. 2001, 84, 2029–2041. [Google Scholar]
- Brenier, Y. The initial value problem for the euler equations of incompressible fluids viewed as a concave maximization problem. Commun. Math. Phys. 2018, 364, 579–605. [Google Scholar] [CrossRef]
- Anikonov, Y.E.; Neshchadim, M.V. On analytical methods in the theory of inverse problems for hyperbolic equations. J. Appl. Ind. Math. 2011, 5, 506–518. [Google Scholar] [CrossRef]
- Etingof, P.I. Inverse problems of potential theory and flows in porous media with time-dependent free boundary. Comput. Math. Appl. 1991, 22, 93–99. [Google Scholar] [CrossRef]
- Wei, T.; Li, X.L.; Li, Y.S. An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Prob. 2018, 32, 085003. [Google Scholar] [CrossRef]
- Sergei, A.; Avdonin, V.S.; Ramdani, K. Reconstructing the potential for the one-dimensional Schrödinger equation from boundary measurements. Ima J. Math. Control. I. 2014, 31, 137–150. [Google Scholar]
- Shvetsov-Shilovski, N.I.; RäSäNen, E. Stable and efficient momentum-space solutions of the time-dependent Schrödinger equation for one-dimensional atoms in strong laser fields. J. Comput. Phys. 2014, 279, 174–181. [Google Scholar] [CrossRef]
- Faustov, R.N.; Galkin, V.O.; Tatarintsev, A.V.; Vshivtsev, A.S. Spectral problem of the radial Schrödinger equation with confining power potentials. Theor. Math. Phys. 1997, 113, 1530–1542. [Google Scholar] [CrossRef]
- Knops, R.J. Book Review: Ill-posed problems of mathematical physics and analysis. Bull. Am. Math. Soc. 1988, 19, 332–338. [Google Scholar] [CrossRef]
- Marin, L.; Elliott, L.; Heggs, P.J.; Ingham, D.B.; Lesnic, D.; Wen, X. BEM solution for the cauchy problem associated with helmholtz-type equations by the landweber method. Eng. Anal. Bound. Elem. 2004, 28, 1025–1034. [Google Scholar] [CrossRef]
- Scherzer, O. Convergence criteria of iterative methods based on landweber iteration for solving nonlinear problems. J. Math. Anal. Appl. 1995, 194, 911–933. [Google Scholar] [CrossRef]
- Han, Y.; Xiong, X.; Xue, X. A fractional landweber method for solving backward time-fractional diffusion problem. Comput. Math. Appl. 2019, 78, 81–91. [Google Scholar] [CrossRef]
- Jiang, S.Z.; Wu, Y.J. Recovering space-dependent source for a time-space fractional diffusion wave equation by fractional Landweber method. Inverse Probl. Sci. En. 2020, 29, 1–22. [Google Scholar] [CrossRef]
- Fu, C.L.; Xiong, X.T.; Qian, Z. Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 2007, 31, 472–480. [Google Scholar] [CrossRef]
- Dou, F.F.; Fu, C.L.; Yang, F.L. Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation. J. Comput. Appl. Math. 2009, 230, 728–737. [Google Scholar] [CrossRef]
- Yang, F.; Fu, J.L.; Li, X.X. A potential-free field inverse Schrödinger problem: Optimal error bound analysis and regularization method. Inverse Probl. Sci. En. 2020, 28, 1209–1252. [Google Scholar] [CrossRef]
- Yang, F.; Wu, H.H.; Li, X.X. Three regularization methods for identifying the initial value of homogeneous anomalous secondary diffusion equation. Math. Method. Appl. Sci. 2021, 44, 13723–13755. [Google Scholar] [CrossRef]
- Qian, A.; Xiong, X.; Wu, Y. On a quasi-reversibility regularization method for a cauchy problem of the helmholtz equation. J. Comput. Appl. Math. 2010, 233, 1969–1979. [Google Scholar] [CrossRef]
- Yang, F.; Fu, J.L. The method of simplified Tikhonov regularization for dealing with the inverse time-dependent heat source problem. Comput. Math. Appl. 2010, 60, 1228–1236. [Google Scholar] [CrossRef]
- Djennadi, S.; Shawagfeh, N.; Arqub, O.A. A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Soliton. Fract. 2021, 150, 111127. [Google Scholar] [CrossRef]
- Ivanchov, M.I. The inverse problem of determining the heat source power for a parabolic equation under arbitrary boundary conditions. J. Math. Sci. 1998, 88, 432–436. [Google Scholar] [CrossRef]
- Thorsten, H. Regularization of exponentially ill-posed problems. Numer. Func. Anal. Opt. 2000, 21, 439–464. [Google Scholar]
- Vaiter, S.; Peyré, G.; Fadili, J.M. Partly smooth regularization of inverse problems. Inverse Probl. Imag. 2014, 5303, 57–68. [Google Scholar]
- Tautenhahn, U. Optimal stable solution of cauchy problems for elliptic equations. Z. Anal. Anwend. 1996, 15, 961–984. [Google Scholar] [CrossRef]
- Tautenhahn, U. Optimality for ill-posed problems under general source conditions. Numer. Func. Anal. Opt. 2007, 19, 377–398. [Google Scholar] [CrossRef]
The Prior | The Posterior | |
---|---|---|
x | 0 | 0.1 | 0.5 | 0.9 | |
---|---|---|---|---|---|
imaginary part | 3.8528 | 3.5900 | 3.5390 | 3.0305 | |
real part | 3.6872 | 3.5840 | 3.3953 | 2.8516 | |
imaginary part | 3.8038 | 3.2990 | 3.4192 | 3.3340 | |
real part | 3.2198 | 3.2599 | 3.7458 | 3.6131 | |
imaginary part | 2.7837 | 3.0263 | 2.6288 | 2.5222 | |
real part | 2.5062 | 2.6698 | 2.4578 | 2.4390 |
x | 0 | 0.1 | 0.5 | 0.9 | |
---|---|---|---|---|---|
imaginary part | 2.9048 | 2.4628 | 3.1220 | 2.6568 | |
real part | 2.4462 | 2.5175 | 2.4988 | 2.4919 | |
imaginary part | 2.7741 | 3.1374 | 2.5543 | 2.5815 | |
real part | 2.5790 | 2.3636 | 2.6282 | 2.4231 | |
imaginary part | 3.4433 | 2.6319 | 2.9360 | 2.3540 | |
real part | 2.4825 | 2.6784 | 2.3447 | 2.4814 |
x | 0 | 0.1 | 0.5 | 0.9 | |
---|---|---|---|---|---|
imaginary part | 8.8441 | 3.3292 | 2.5647 | 2.9310 | |
real part | 3.3262 | 2.4933 | 2.6226 | 2.5787 | |
imaginary part | 2.5854 | 3.1151 | 2.7623 | 2.7536 | |
real part | 2.8532 | 2.6008 | 2.4003 | 2.4627 | |
imaginary part | 3.8097 | 4.1494 | 3.5712 | 3.6969 | |
real part | 3.9111 | 3.3240 | 3.2959 | 3.2857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, D.; Yang, F.; Li, X. Fractional Landweber Iterative Regularization Method for Solving the Inverse Problem of Time-Fractional Schrödinger Equation. Symmetry 2022, 14, 2010. https://doi.org/10.3390/sym14102010
Gao Y, Li D, Yang F, Li X. Fractional Landweber Iterative Regularization Method for Solving the Inverse Problem of Time-Fractional Schrödinger Equation. Symmetry. 2022; 14(10):2010. https://doi.org/10.3390/sym14102010
Chicago/Turabian StyleGao, Yinxia, Dungang Li, Fan Yang, and Xiaoxiao Li. 2022. "Fractional Landweber Iterative Regularization Method for Solving the Inverse Problem of Time-Fractional Schrödinger Equation" Symmetry 14, no. 10: 2010. https://doi.org/10.3390/sym14102010
APA StyleGao, Y., Li, D., Yang, F., & Li, X. (2022). Fractional Landweber Iterative Regularization Method for Solving the Inverse Problem of Time-Fractional Schrödinger Equation. Symmetry, 14(10), 2010. https://doi.org/10.3390/sym14102010