Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
- is continuous;
- 3.
- 4.
- 5.
- Ifandwiththen
- 1.
- 2.
- is continuous;
- 3.
- 4.
- 5.
- Ifandwiththen
- (IFB1)
- (1FB2)
- (IFB3)
- (IFB4)
- (IFB5)
- (IFB6)is a non-decreasing function of;
- (IFB7)
- (IFB8)
- (IFB9)
- (IFB10)
- (IFB11)is a non-increasing function ofand
- thenis said to be IFBMS.
- (IFD1)
- (IFD2)
- (IFD3)
- (IFD4)
- (IFD5)
- (IFD6)is left continuous;
- (IFD7)
- (IFD8)
- (IFD9)
- (IFD10)
- (IFD11)is left continuous;
- thenis said to be IFDCMS.
3. Main Results
- (IFDL1)
- (IFDL2)
- (IFDL3)
- (IFDL4)
- (IFDL5)
- (IFDL6)is left continuous;
- (IFDL7)
- (IFDL8)
- (IFDL9)
- (IFDL10)
- (IFDL11)is left continuous;thenis said to be an IFDCMLS.
- (i)
- is said to be a convergent sequence if there existssuch that
- (ii)
- is said to be a Cauchy sequence (CS) if for everythere existssuch thatexists and is finite.
- (iii)
- An IFDCMLSis said to be complete if every CS is convergent inthat is
4. Application to an Integral Equation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FSs | Fuzzy sets |
FMSs | Fuzzy metric spaces |
CTN | Continuous triangular norm |
CTCN | Continuous triangular co-norm |
IFMSs | Intuitionistic fuzzy metric spaces |
MLSs | Metric-like spaces |
CMLSs | Controlled metric-like spaces |
FMLSs | Fuzzy metric-like spaces |
IFDMSs | Intuitionistic fuzzy double-controlled metric spaces |
IFDCMLSs | Intuitionistic fuzzy double-controlled metric-like spaces |
FP | Fixed point |
FDMSs | Fuzzy double-controlled metric spaces |
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, I.; Michlek, J. Fuzzy metric and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Veeramani, P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 1997, 90, 365–368. [Google Scholar] [CrossRef]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Set Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Harandi, A. Metric-like paces, partial metric spaces and fixed point. Fixed Point Theory Appl. 2012, 204. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Souayah, N.; Abdeljawad, T.; Aydi, H. A new extension to the controlled metric type spaces endowed with a graph. Adv. Differ. Equ. 2021, 94. [Google Scholar] [CrossRef]
- Shukla, S.; Abbas, M. Fixed point results in fuzzy metric-like spaces. Iran. J. Fuzzy Syst. 2014, 11, 81–92. [Google Scholar]
- Javed, K.; Uddin, F.; Aydi, H.; Arshad, M.; Ishtiaq, U.; Alsamir, H. On Fuzzy b-Metric-Like Spaces. J. Funct. Spaces 2021. [Google Scholar] [CrossRef]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- Konwar, N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. J. Intell. Fuzzy Syst. 2020, 39, 7831–7841. [Google Scholar] [CrossRef]
- Shatanawi, W.; Gupta, V.; Kanwar, A. New results on modified intuitionistic generalized fuzzy metric spaces by employing E.A property and common E.A property for coupled maps. J. Intell. Fuzzy Syst. 2020, 38, 3003–3010. [Google Scholar] [CrossRef]
- Gupta, V.; Saini, R.K.; Kanwar, A. Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and application to integral type contraction. Iran. J. Fuzzy Syst. 2017, 14, 123–137. [Google Scholar]
- Sezen, M.S. Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial. Differ. Equ. 2021, 37, 583–593. [Google Scholar] [CrossRef]
- Saleem, N.; Isik, H.; Furqan, S.; Park, C. Fuzzy double controlled metric spaces. J. Intell. Fuzzy Syst. 2021, 40, 9977–9985. [Google Scholar] [CrossRef]
- Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 1979, 67, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Rafi, M.; Noorani, M.S.M. Fixed theorems on intuitionistic fuzzy metric space. Iran. J. Fuzzy Syst. 2006, 3, 23–29. [Google Scholar]
- Sintunavarat, W.; Kumam, P. Fixed Theorems for a Generalized Intuitionistic Fuzzy Contraction in Intuitionistic Fuzzy Metric Spaces. Thai J. Math. 2012, 10, 123–135. [Google Scholar]
- Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 29, 1073–1078. [Google Scholar] [CrossRef]
- Mohamad, A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2007, 34, 1689–1695. [Google Scholar] [CrossRef]
- Dey, D.; Saha, M. An extension of Banach fixed point theorem in fuzzy metric space. Bol. Soc. Parana. Mat. 2014, 32, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Farheen, M.; Ahmed, K.; Javed, K.; Parvaneh, V.; Ud Din, F.; Ishtiaq, U. Intuitionistic Fuzzy Double Controlled Metric Spaces and Related Results. Secur. Commun. Netw. 2022, 2022, 6254055. [Google Scholar] [CrossRef]
- Peng, F.; Wang, Y.; Xuan, H.; Nguyen, T.V. Efficient road traffic anti-collision warning system based on fuzzy nonlinear programming. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 456–461. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Huynh, N.T.; Vu, N.C.; Kieu, V.N.; Huang, S.C. Optimizing compliant gripper mechanism design by employing an effective bi-algorithm: Fuzzy logic and ANFIS. Microsyst. Technol. 2021, 27, 3389–3412. [Google Scholar] [CrossRef]
- Wang, C.N.; Yang, F.C.; Nguyen, V.T.T.; Vo, N.T. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Micromachines 2022, 13, 1208. [Google Scholar] [CrossRef]
- Uddin, F.; Ishtiaq, U.; Hussain, A.; Javed, K.; Al Sulami, H.; Ahmed, K. Neutrosophic Double Controlled Metric Spaces and Related Results with Application. Fractal Fract. 2022, 6, 318. [Google Scholar] [CrossRef]
- Mustafa, Z.; Parvaneh, V.; Abbas, M.; Roshan, J.R. Some coincidence point results for generalized (ψ,φ)-weakly contractive mappings in ordered G-metric spaces. Fixed Point Theory Appl. 2013, 326. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishtiaq, U.; Saleem, N.; Uddin, F.; Sessa, S.; Ahmad, K.; di Martino, F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry 2022, 14, 2364. https://doi.org/10.3390/sym14112364
Ishtiaq U, Saleem N, Uddin F, Sessa S, Ahmad K, di Martino F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry. 2022; 14(11):2364. https://doi.org/10.3390/sym14112364
Chicago/Turabian StyleIshtiaq, Umar, Naeem Saleem, Fahim Uddin, Salvatore Sessa, Khaleel Ahmad, and Ferdinando di Martino. 2022. "Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application" Symmetry 14, no. 11: 2364. https://doi.org/10.3390/sym14112364
APA StyleIshtiaq, U., Saleem, N., Uddin, F., Sessa, S., Ahmad, K., & di Martino, F. (2022). Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry, 14(11), 2364. https://doi.org/10.3390/sym14112364