Next Article in Journal
A New Symbolic Time Series Analysis Method Based on Time-to-Space Mapping, through a Symmetric Magnetic Field, Quantized by Prime Numbers
Next Article in Special Issue
Survivability of AIDS Patients via Fractional Differential Equations with Fuzzy Rectangular and Fuzzy b-Rectangular Metric like Spaces
Previous Article in Journal
Electrically Driven Torsional Distortions in Twisted Nematic Volumes
Previous Article in Special Issue
Generalized Cyclic p-Contractions and p-Contraction Pairs Some Properties of Asymptotic Regularity Best Proximity Points, Fixed Points
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application

1
Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan
2
Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
3
Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54000, Pakistan
4
Dipartimento di Architettura, Università Dinapoli Federico II, Via Toledo 403, 80121 Napoli, Italy
5
Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2364; https://doi.org/10.3390/sym14112364
Submission received: 11 October 2022 / Revised: 26 October 2022 / Accepted: 7 November 2022 / Published: 9 November 2022
(This article belongs to the Special Issue Elementary Fixed Point Theory and Common Fixed Points)

Abstract

:
In this article, we establish the concept of intuitionistic fuzzy double-controlled metric-like spaces by “assuming that the self-distance may not be zero”; if the value of the metric is zero, then it has to be “a self-distance”. We derive numerous fixed-point results for contraction mappings. In addition, we provide several non-trivial examples with their graphical views and an application of integral equations to show the validity of the proposed results.

1. Introduction

In 1965, Zadeh [1] developed “fuzzy notion” to contrast imprecise terms, in which the membership function is used. Atanassov [2] introduced the concept of intuitionistic fuzzy sets in which membership and non-membership functions are used. Fuzzy sets presented in [1] and metric spaces are combined to establish the concept of fuzzy metric spaces, in which the notion of the continuous t-norm is used, which was introduced by Schweizer and Sklar [3]. The notion of fuzzy metric spaces was first introduced by Kramosil and Michalak [4] in 1975 and then George and Veeramani [5,6] updated it in 1994. Garbiec [7] established the fuzzy version of the Banach fixed-point result.
Harandi [8] established the concept of metric-like spaces and proved several fixed-point theorems for contraction mappings. The notion of metric-like spaces is a generalization of metric space. Mlaiki [9] established the concept of controlled metric-type spaces. Mlaiki et al. [10] established the notion of controlled metric-like spaces as a generalization of controlled-type metric spaces. Shukla and Abbas [11] established the notion of fuzzy metric-like spaces as a generalization of fuzzy metric spaces. Recently, Javed et al. [12] introduced the notion of fuzzy b-metric-like spaces as a generalization of fuzzy b-metric spaces and fuzzy metric-like spaces and proved several fixed-point results for contraction mappings.
In 2004, Park [13] established the notion of intuitionistic fuzzy metric spaces and discussed the topological structure. Konwar [14] established the concept of intuitionistic fuzzy b-metric spaces as a generalization of intuitionistic fuzzy metric spaces. Shatanawi et al. [15] used an E.A property and the common E.A property for coupled maps to obtain new results on generalized intuitionistic fuzzy metric spaces, and Gupta et al. [16] obtained some coupled fixed-point results on modified intuitionistic fuzzy metric spaces and applied them to the integral-type contraction. Recently, Sezen [17] established the concept of controlled fuzzy metric spaces and derived several fixed-point results. Saleem et al. [18] established the concept of fuzzy double-controlled metric spaces as a generalization of controlled fuzzy metric spaces and proved several fixed-point results for contraction mappings with an application of integral equations. Itoh [19] derived several random fixed-point theorems with an application of random differential equations in Banach spaces. Numerous fixed-point results of generalizations of fuzzy metric spaces were established by the authors [20,21,22,23,24]. Recently, Farheen et al. [25] introduced the concept of intuitionistic fuzzy double-controlled metric spaces and proved some fixed-point results. The authors in [26,27,28,29,30] worked on different interesting applications of the fixed-point theory.
In this manuscript, we introduce the concept of intuitionistic fuzzy double-controlled metric-like spaces by replacing the following properties of intuitionistic fuzzy double-controlled metric spaces:
( ϖ , ϱ , υ ) = 1   for   all   υ > 0 ,   if   and   only   if   ϖ = ϱ ,
( ϖ , ϱ , υ ) = 0   for   all   υ > 0 ,   if   and   only   if   ϖ = ϱ ,
( ϖ , ϱ , υ ) = 1   for   all   υ > 0 ,   if   and   only   if   ϖ = ϱ ,
with
( ϖ , ϱ , υ ) = 1   for   all   υ > 0 ,   implies   ϖ = ϱ ,
( ϖ , ϱ , υ ) = 0   for   all   υ > 0 ,   implies   ϖ = ϱ .
We assume that the self-distance may not be zero; if the value of the metric is zero, then it has to be a self-distance and several fixed-point results for contraction mappings must be proven. Additionally, we establish a number of non-trivial examples with their graphs and an application for integral equations.

2. Preliminaries

In the section, we give some basic notions that are helpful for readers to understand the main section.
Definition 1
 ([1]). A fuzzy set F defined in a space X is a non-empty set of 2-tuple elements:
F = { x , μ ( x ) ,   x X } ,     x X ,
where μ : X [ 0 , 1 ] is a membership function of a set S , which for every element x X assigns its membership degree μ ( x ) [ 0 , 1 ] to the fuzzy set F . The set X is called a domain of discourse and we write F   X .
Definition 2
 ([2]). Let X be a non-empty set. An intuitionistic fuzzy set A in X is an object having the form A = { μ ( x ) , ν ( x ) : x X } , where the functions μ , ν : X [ 0 , 1 ] define, respectively, the degree of membership and degree of non-membership of the element x X to the set A , which is the subset of X , and for all x X ,   0 μ ( x ) + ν ( x ) 1 . Furthermore, we have π ( x ) = 1 μ ( x ) ν ( x ) , called the index of the intuitionistic fuzzy set or the hesitation margin of x A .   π ( x ) is the degree of indeterminacy of x X to the intuitionistic fuzzy set A and π ( x ) [ 0 , 1 ] for every x X .
Definition 3
 ([13]). A binary operation : [0, 1] × [0, 1] [0, 1] is said to be a CTN if it satisfies the following conditions:
1. 
ς ɷ = ɷ ς ,   ( )   ς , ɷ [ 0 ,   1 ] ;
2. 
is continuous;
3. 
ς 1 = ς ,   ( )   ς [ 0 ,   1 ] ;
4. 
( ς ɷ ) ρ = ς ( ɷ ρ ) ,   ( )   ς , ɷ , ρ [ 0 ,   1 ] ;
5. 
If ς ρ and ɷ Δ , with ς , ɷ , ρ , Δ [ 0 ,   1 ] , then ς ɷ ρ Δ .
Definition 4
 ([13]). A binary operation : [0, 1] × [0, 1] [0, 1] is said to be a CTCN if it satisfies the following conditions:
1. 
ς     ɷ = ɷ     ς ,   f o r   a l l   ς , ɷ [ 0 ,   1 ] ;
2. 
is continuous;
3. 
ς     0 = 0 ,   f o r   a l l   ς [ 0 ,   1 ] ;
4. 
( ς     ɷ )   ρ = ς   ( ɷ     ρ ) ,   f o r   a l l   ς , ɷ , ρ [ 0 ,   1 ] ;
5. 
If ς ρ and ɷ Δ , with ς , ɷ , ρ , Δ [ 0 ,   1 ] , then ς     ɷ ρ     Δ .
Definition 5
 ([14]). Suppose Ξ . Let be a CTN, be a CTCN and b 1 . Let , be FSs on   Ξ × Ξ × ( 0 , ) , If they satisfy the following conditions for all ϖ , ϱ Ξ   a n d   ϱ , υ > 0 :
  • (IFB1) ( ϖ , ϱ , υ ) + ( ϖ , ϱ , υ ) 1 ;
  • (1FB2) ( ϖ , ϱ , υ ) > 0 ;
  • (IFB3) ( ϖ , ϱ , υ ) = 1   ϖ = ϱ ;
  • (IFB4) ( ϖ , ϱ , υ ) = ( ϱ , ϖ , υ ) ;
  • (IFB5) ( ϖ , λ , b ( υ + ϱ ) ) ( ϖ , ϱ , υ ) ( ϱ , λ , ϱ ) ;
  • (IFB6) ( ϖ , ϱ , · ) is a non-decreasing function of +   a n d   l i m υ ( ϖ , ϱ , υ ) = 1 ;
  • (IFB7)   ( ϖ , ϱ , υ ) > 0 ;
  • (IFB8)   ( ϖ , ϱ , υ ) = 0   ϖ = ϱ ;
  • (IFB9) ( ϖ , ϱ , υ ) = ( ϱ , ϖ , υ ) ;
  • (IFB10) ( ϖ , λ , b ( υ + ϱ ) ) ( ϖ , ϱ , υ ) ( ϱ , λ , ϱ ) ;
  • (IFB11) ( ϖ , ϱ , · ) is a non-increasing function of + and l i m υ ( ϖ , ϱ , υ ) = 0 ;
  • then ( Ξ , , , * ,   ) is said to be IFBMS.
Definition 6
 ([25]). Let Ξ . Suppose П , Ƹ : Ξ × Ξ [ 1 , ) are non-comparable functions. Let be a CTN and be a CTCN. Let ,   be FSs on Ξ × Ξ × ( 0 , ) . If they satisfy the following conditions for all ϖ , ϱ , λ Ξ :
  • (IFD1) ( ϖ , ϱ , υ ) + ( ϖ , ϱ , υ ) 1 ;
  • (IFD2) ( ϖ , ϱ , υ ) > 0 ;
  • (IFD3) ( ϖ , ϱ , υ ) = 1   f o r   a l l   υ > 0 ,   i f   a n d   o n l y   i f   ϖ = ϱ ;
  • (IFD4) ( ϖ , ϱ , υ ) = ( ϱ , ϖ , υ ) ;
  • (IFD5) ( ϖ , λ , υ + ϱ ) ( ϖ , ϱ , υ П ( ϖ , ϱ ) ) ( ϱ , λ , ϱ Ƹ ( ϱ , λ ) ) ;
  • (IFD6) ( ϖ , ϱ , · ) : ( 0 , ) [ 0 , 1 ] is left continuous;
  • (IFD7) ( ϖ , ϱ , υ ) > 0 ;
  • (IFD8) ( ϖ , ϱ , υ ) = 0   f o r   a l l   υ > 0 ,   i f   a n d   o n l y   i f   ϖ = ϱ ;
  • (IFD9) ( ϖ , ϱ , υ ) = ( ϱ , ϖ , υ ) ;
  • (IFD10) ( ϖ , λ , υ + ϱ ) ( ϖ , ϱ , υ П ( ϖ , ϱ ) )   ( ϱ , λ , ϱ Ƹ ( ϱ , λ ) ) ;
  • (IFD11) ( ϖ , ϱ , · ) : ( 0 , ) [ 0 , 1 ] is left continuous;
  • then ( Ξ , , , , ) is said to be IFDCMS.

3. Main Results

In this section, we introduce the concept of IFDCMLSs and prove some FP results for contraction mappings.
Definition 7.
Let Ξ . Suppose П , Ƹ : Ξ × Ξ [ 1 , ) are non-comparable functions. Let be a CTN and be a CTCN. Let   a n d   be FSs on Ξ × Ξ × ( 0 , ) . If they satisfy the following conditions for all ϖ , ϱ , λ Ξ :
  • (IFDL1) ( ϖ , ϱ , υ ) + ( ϖ , ϱ , υ ) 1 ;
  • (IFDL2) ( ϖ , ϱ , υ ) > 0 ;
  • (IFDL3) ( ϖ , ϱ , υ ) = 1   f o r   a l l   υ > 0 ,   i m p l i e s   ϖ = ϱ ;
  • (IFDL4) ( ϖ , ϱ , υ ) = ( ϱ , ϖ , υ ) ;
  • (IFDL5) ( ϖ , λ , υ + ϱ ) ( ϖ , ϱ , υ П ( ϖ , ϱ ) ) ( ϱ , λ , ϱ Ƹ ( ϱ , λ ) ) ;
  • (IFDL6) ( ϖ , ϱ ,   · ) : ( 0 , ) [ 0 , 1 ] is left continuous;
  • (IFDL7) ( ϖ , ϱ , υ ) > 0 ;
  • (IFDL8) ( ϖ , ϱ , υ ) = 0   f o r   a l l   υ > 0 ,   i m p l i e s   ϖ = ϱ ;
  • (IFDL9) ( ϖ , ϱ , υ ) = ( ϱ , ϖ , υ ) ;
  • (IFDL10) ( ϖ , λ , υ + ϱ ) ( ϖ , ϱ , υ П ( ϖ , ϱ ) )   ( ϱ , λ , ϱ Ƹ ( ϱ , λ ) ) ;
  • (IFDL11) ( ϖ , ϱ ,   · ) : ( 0 , ) [ 0 , 1 ] is left continuous;
    then ( Ξ , , , , ) is said to be an IFDCMLS.
Example 1.
Suppose Ξ = [ 0 , 10 ]   a n d   П , Ƹ : Ξ × Ξ [ 1 , )  are non-comparable functions given by П ( ϖ , ϱ ) = ϖ + ϱ + 1   a n d   Ƹ ( ϖ , ϱ ) = ϖ 2 + ϱ 2 + 1 . Define , : Ξ × Ξ × ( 0 , ) [ 0 , 1 ] by
( ϖ , ϱ , υ ) = υ υ + m a x { ϖ , ϱ }
and
( ϖ , ϱ , υ ) = m a x { ϖ , ϱ } υ + m a x { ϖ , ϱ } .
Then, ( Ξ , , , , ) is an IFDCMLS with CTN ς ɷ = ς ɷ and CTCN ς     ɷ = m a x { ς , ɷ } .
Remark 1.
In IFDCMLS, the self-distance may be not equal to 1 for the membership function or 0 for non-membership function. So, every IFDCMS is an IFDCMLS, but the converse is not true.
Consider Example 1, and let ϖ = ϱ = 1 . Then
( ϖ , ϱ , υ ) = υ υ + m a x { 1 , 1 } 1
and
( ϖ , ϱ , υ ) = m a x { 1 , 1 } υ + m a x { 1 , 1 } 0
.
Remark 2.
Example 2 is also fulfilled for CTN ς     ɷ = m i n { ς , ɷ } and CTCN ς     ɷ = m a x { ς , ɷ } .
Example 2.
Let Ξ = [ 0 , 1 ]   a n d   П , Ƹ : Ξ × Ξ [ 1 , )  be two NCFs given by П ( ϖ , ϱ ) = ϖ + ϱ + 1   a n d   Ƹ ( ϖ , ϱ ) = ϖ 2 + ϱ 2 + 1 .
Define , : Ξ × Ξ × ( 0 , ) [ 0 , 1 ] as
( ϖ , ϱ , υ ) = υ υ + m a x { ϖ , ϱ } 2 ,   ( ϖ , ϱ , υ ) = m a x { ϖ , ϱ } 2 υ + m a x { ϖ , ϱ } 2 .
Then ( Ξ , , , , ) is an IFDCMLS with CTN ς ɷ = ς ɷ and CTCN ς     ɷ = m a x { ς , ɷ } . The graphical behavior of functions P   a n d   is shown inFigure 1.
Remark 3.
The above example also holds for
П ( ϖ , ϱ ) = { 1   i f   ϖ = ϱ , 1 + m a x { ϖ , ϱ } m i n { ϖ , ϱ }   i f   ϖ ϱ
and
Ƹ ( ϖ , ϱ ) = { 1   i f   ϖ = ϱ , 1 + m a x { ϖ 2 , ϱ 2 } m i n { ϖ 2 , ϱ 2 }   i f   ϖ ϱ .
Remark 4.
Example 3 is also fulfilled for CTN ς ɷ = m i n { ς , ɷ } and CTCN ς     ɷ = m a x { ς , ɷ } .
Example 3.
Let Ξ = [ 0 , 3 ]   a n d   П , Ƹ : Ξ × Ξ [ 1 , )  be two NCFs given by П ( ϖ , ϱ ) = ϖ + ϱ + 1   a n d   Ƹ ( ϖ , ϱ ) = ϖ 2 + ϱ 2 1 . Define , : Ξ × Ξ × ( 0 , ) [ 0 , 1 ] as
( ϖ , ϱ , υ ) = υ + m i n { ϖ , ϱ } υ + m a x { ϖ , ϱ }
and
( ϖ , ϱ , υ ) = 1 υ + m i n { ϖ , ϱ } υ + m a x { ϖ , ϱ } .
Then ( Ξ , , , , ) is an IFDCMLS with CTN ς ɷ = ς ɷ and CTCN ς     ɷ = m a x { ς , ɷ } . The graphical behavior of functions P   a n d   is shown inFigure 2.
Remark 5.
In the above example, if we let ς ɷ = m i n { ς , ɷ } , ς     ɷ = m a x { ς , ɷ } , ϖ = 1 ,   ϱ = 2 ,   λ = 3 ,   υ = 0.01 ,   ϱ = 0.02   w i t h   П ( ϖ , ϱ ) = ϖ + ϱ + 1   a n d   Ƹ ( ϖ , ϱ ) = ϖ 2 + ϱ 2 1 . Then, it is not an IFDCMLS.
Proposition 1.
Let Ξ = [ 0 , 1 ] and П , Ƹ : Ξ × Ξ [ 1 , ) be two NCFs given by П ( ϖ , ϱ ) = 2 ( ϖ + ϱ + 1 )   a n d   Ƹ ( ϖ , ϱ ) = 2 ( ϖ 2 + ϱ 2 + 1 ) . Define ,   as
( ϖ , ϱ , υ n ) = ϑ m a x { ϖ ,   ϱ } 2 υ n ,   ( ϖ , ϱ , υ n ) = 1 ϑ m a x { ϖ ,   ϱ } 2 υ n   f o r   a l l   ϖ , ϱ Ξ , υ   >   0
Then, let ( Ξ , , , , ) be an IFDCMLS with ς ɷ = ς ɷ and ς     ɷ = m a x { ς , ɷ } . The graphical behavior of functions P   a n d   is shown inFigure 3.
Remark 6.
Proposition 1 is also satisfied for CTN ς ɷ = m i n { ς , ɷ } and CTCN ς     ɷ = m a x { ς , ɷ } .
Proposition 2.
Let Ξ = [ 0 , 1 ] and П , Ƹ : Ξ × Ξ [ 1 , ) be two NCFs given by П ( ϖ , ϱ ) = 2 ( ϖ + ϱ + 1 )   a n d   Ƹ ( ϖ , ϱ ) = 2 ( ϖ 2 + ϱ 2 + 1 ) . Define ,   as
( ϖ , ϱ , υ n ) = [ ϑ m a x { x ,   y } 2 υ n ] 1 ,   ( ϖ , ϱ , υ n ) = 1 [ ϑ m a x { x ,   y } 2 υ n ] 1   f o r   a l l   ϖ , ϱ Ξ , υ > 0
.
Then ( Ξ , , , , ) is an IFDCMLS with CTN ς ɷ = ς ɷ and CTCN ς     ɷ = m a x { ς , ɷ } . The graphical behavior of functions P   a n d   is shown inFigure 4.
Remark 7.
The above proposition is also satisfied for CTN ς ɷ = m i n { ς , ɷ } and CTCN ς     ɷ = m a x { ς , ɷ } .
Definition 8.
Let an open ball B ( ϖ , r , υ ) in an IFDCMLS ( Ξ , , , , ) with center ϖ , radius r ,   0 < r < 1 and υ > 0 be defined as follows:
B ( ϖ , r , υ ) = { ϱ Ξ : ( ϖ , ϱ , υ ) > 1 r ,   ( ϖ , ϱ , υ ) < r } .
Definition 9.
Suppose ( Ξ , , , , ) is an IFDCMLS. Let { ϖ n } be a sequence in   Ξ . Then
(i) 
{ ϖ n } is said to be a convergent sequence if there exists ϖ Ξ such that
l i m n ( ϖ n ,   ϖ ,   υ ) = ( ϖ ,   ϖ ,   υ ) ,   l i m n ( ϖ n ,   ϖ ,   υ ) = ( ϖ ,   ϖ ,   υ ) ,   f o r   a l l   υ > 0
.
(ii) 
{ ϰ n } is said to be a Cauchy sequence (CS) if for every υ > 0 there exists n 0 such that l i m n ( ϖ n ,   ϖ n + λ ,   υ ) , a n d   l i m n ( ϖ n ,   ϖ n + λ ,   υ ) exists and is finite.
(iii) 
An IFDCMLS ( Ξ , , , , ) is said to be complete if every CS is convergent in Ξ , that is
l i m n ( ϖ n ,   ϖ n + λ ,   υ ) = l i m n ( ϖ n ,   ϖ ,   υ ) = ( ϖ ,   ϖ ,   υ ) ,  
l i m n ( ϖ n ,   ϖ n + λ ,   υ ) = l i m n ( ϖ n ,   ϖ ,   υ ) = ( ϖ ,   ϖ ,   υ ) .  
Lemma 1.
Let ϖ   a n d   ϱ be any two points in an IFDCMLS ( Ξ , , , , ) . If for any τ ( 0 , 1 ) , we have
( ϖ , ϱ , τ υ ) ( ϖ , ϱ , υ ) ,   ( ϖ , ϱ , τ υ ) ( ϖ , ϱ , υ ) ,
then ϖ = ϱ .
Theorem 1.
Let ( Ξ , , , , ) be a complete IFDCMLS with П , Ƹ : Ξ × Ξ ( 0 , 1 ) and 0 < τ < 1 , assume that
l i m υ ( ϖ , ϱ , υ ) = 1   a n d   l i m υ ( ϖ , ϱ , υ ) = 0  
for all ϖ , ϱ Ξ and υ > 0 . Let ξ : Ξ Ξ be a mapping satisfying
( ξ ϖ , ξ ϱ , τ υ ) ( ϖ , ϱ , υ )   a n d   ( ξ ϖ , ξ ϱ , τ υ ) ( ϖ , ϱ , υ )  
for all ϖ , ϱ Ξ and υ > 0 . Then ξ has a unique FP.
Proof. 
Suppose ϖ 0 is an arbitrary point in Ξ and define a sequence ϖ n by ϖ n = ξ n ϖ 0 = ξ ϖ n 1 , n . By utilizing ( 1 ) for all υ > 0 , we deduce
( ϖ n , ϖ n + 1 , τ υ ) = ( ξ ϖ n 1 , ξ ϖ n , τ υ ) ( ϖ n 1 , ϖ n , υ ) ( ϖ n 2 , ϖ n 1 , υ τ )
( ϖ n 3 , ϖ n 2 , υ τ 2 ) ( ϖ 0 , ϖ 1 , υ τ n 1 )
and
( ϖ n , ϖ n + 1 , τ υ ) = ( ξ ϖ n 1 , ξ ϖ n , τ υ ) ( ϖ n 1 , ϖ n , υ ) ( ϖ n 2 , ϖ n 1 , υ τ )
( ϖ n 3 , ϖ n 2 , υ τ 2 ) ( ϖ 0 , ϖ 1 , υ τ n 1 )
We obtain
( ϖ n , ϖ n + 1 , τ υ ) ( ϖ 0 , ϖ 1 , υ τ n 1 )   and   ( ϖ n , ϖ n + 1 , τ υ ) ( ϖ 0 , ϖ 1 , υ τ n 1 )
for any λ ,   using   ( IFDL 5 )   and   ( IFDL 10 ) ,
( ϖ n , ϖ n + λ , υ ) ( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + λ , υ 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ n + 2 , ϖ n + λ , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
( ϖ n + 3 , ϖ n + λ , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
( ϖ n + 3 , ϖ n + 4 , υ ( 2 ) 4 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) П ( ϖ n + 3 , ϖ n + 4 ) ) )
( ϖ n + λ 2 , ϖ n + λ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
( ϖ n + λ 1 , ϖ n + λ , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
and
( ϖ n , ϖ n + λ , υ ) ( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + λ , υ 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ n + 2 , ϖ n + λ , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
  ( ϖ n + 3 , ϖ n + λ , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
  ( ϖ n + 3 , ϖ n + 4 , υ ( 2 ) 4 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) П ( ϖ n + 3 , ϖ n + 4 ) ) )
( ϖ n + λ 2 , ϖ n + λ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
  ( ϖ n + λ 1 , ϖ n + λ , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
Using inequalities in (3), we have
( ϖ 0 , ϖ 1 , υ 2 ( τ ) n 1 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ 0 , ϖ 1 , υ ( 2 ) 2 ( τ ) n ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ 0 , ϖ 1 , υ ( 2 ) 3 ( τ ) n + 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
( ϖ 0 , ϖ 1 , υ ( 2 ) 4 ( τ ) n + 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) П ( ϖ n + 3 , ϖ n + 4 ) ) )
( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( τ ) n + λ 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( τ ) n + λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
and
( ϖ 0 , ϖ 1 , υ 2 ( τ ) n 1 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ 0 , ϖ 1 , υ ( 2 ) 2 ( τ ) n ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ 0 , ϖ 1 , υ ( 2 ) 3 ( τ ) n + 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
  ( ϖ 0 , ϖ 1 , υ ( 2 ) 4 ( τ ) n + 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) П ( ϖ n + 3 , ϖ n + 4 ) ) )
( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( τ ) n + λ 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
  ( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( τ ) n + λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
Utilizing equations in (1) and for n , we obtain
lim n ( ϖ n , ϖ n + λ , υ ) = 1 1 1 = 1
and
lim n ( ϖ n , ϖ n + λ , υ ) = 0     0     0 = 0
.
That is, { ϖ n } is a CS. Therefore, ( Ξ , , , , ) is a complete IFDCMLS, and there exists ϖ in Ξ .
Now investigate that ϖ is an FP of ξ, using ( IFDL 5 ) ,   ( IFDL 10 )   and   ( 2 ) of Definition 7, we obtain
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 ( П ( ϖ , ϖ n + 1 ) ) ) ( ϖ n + 1 , ξ ϖ , υ 2 ( Ƹ ( ϖ n + 1 , ξ ϖ ) ) )
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 ( П ( ϖ , ϖ n + 1 ) ) ) ( ξ ϖ n , ξ ϖ , υ 2 ( Ƹ ( ϖ n + 1 , ξ ϖ ) ) )
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 ( П ( ϖ , ϖ n + 1 ) ) ) ( ϖ n , ϖ , υ 2 τ ( Ƹ ( ϖ n + 1 , ξ ϖ ) ) ) 1 1 = 1
as   n , and
( ϖ , ξ ϖ , υ )   ( ϖ , ϖ n + 1 , υ 2 ( П ( ϖ , ϖ n + 1 ) ) )   ( ϖ n + 1 , ξ ϖ , υ 2 ( Ƹ ( ϖ n + 1 , ξ ϖ ) ) )
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 ( П ( ϖ , ϖ n + 1 ) ) )   ( ξ ϖ n , ξ ϖ , υ 2 ( Ƹ ( ϖ n + 1 , ξ ϖ ) ) )
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 ( П ( ϖ , ϖ n + 1 ) ) )   ( ϖ n , ϖ , υ 2 τ ( Ƹ ( ϖ n + 1 , ξ ϖ ) ) ) 0     0 = 0
as   n . Hence, ξ ϖ = ϖ .
Uniqueness: Given another FP, i.e., ξ ρ = ρ for some ρ Ξ , then
1 ( ρ , ϖ , υ ) = ( ξ ρ , ξ ϖ , υ ) ( ρ , ϖ , υ τ ) = ( ξ ρ , ξ ϖ , υ τ )
( ρ , ϖ , υ τ 2 ) ( ρ , ϖ , υ τ n ) 1   as   n ,
and
0 ( ρ , ϖ , υ ) = ( ξ ρ , ξ ϖ , υ ) ( ρ , ϖ , υ τ ) = ( ξ ρ , ξ ϖ , υ τ )
( ρ , ϖ , υ τ 2 ) ( ρ , ϖ , υ τ n ) 0   as   n ,
by utilizing ( IFDL 3 )   and   ( IFDL 8 ) ,   we   obtain   ϖ = ρ . □
Definition 10.
Suppose ( Ξ , , , , ) is an IFDCMLS. A mapping ξ : Ξ Ξ is said to be a D-controlled intuitionistic fuzzy-like contraction if there exists   0 < τ < 1 , such that
1 ( ξ ϖ , ξ ϱ , υ ) 1 τ [ 1 ( ϖ , ϱ , υ ) 1 ]  
and
( ξ ϖ , ξ ϱ , υ ) τ ( ϖ , ϱ , υ ) ,  
for all ϖ , ϱ Ξ   a n d   υ > 0 .
Theorem 2.
Let ( Ξ , , , , ) be a complete IFDCMLS with П , Ƹ : Ξ × Ξ [ 1 , ) and suppose that
l i m υ ( ϖ , ϱ , υ ) = 1   a n d   l i m υ ( ϖ , ϱ , υ ) = 0  
for all ϖ , ϱ Ξ and υ > 0 . Suppose ξ : Ξ Ξ is a D-controlled intuitionistic fuzzy-like contraction. Moreover, assume that for a random point ϖ 0 Ξ ,   f o r   n , λ , with   ϖ n = ξ n ϖ 0 = ξ ϖ n 1 . Then ξ has a unique FP.
Proof. 
Suppose ϖ 0 is an arbitrary point in Ξ and define a sequence ϖ n by ϖ n = ξ n ϖ 0 = ξ ϖ n 1 , n . By utilizing ( 4 ) and ( 5 ) for all υ > 0 ,   n > λ , we deduce
1 ( ϖ n , ϖ n + 1 , υ ) 1 = 1 ( ξ ϖ n 1 , ξ ϖ n , υ ) 1
τ [ 1 ( ϖ n 1 , ϖ n , υ ) 1 ] = τ ( ϖ n 1 , ϖ n , υ ) τ
1 ( ϖ n , ϖ n + 1 , υ ) τ ( ϖ n 1 , ϖ n , υ ) + ( 1 τ )
τ 2 ( ϖ n 2 , ϖ n 1 , υ ) + τ ( 1 τ ) + ( 1 τ )
Similarly, we deduce
1 ( ϖ n , ϖ n + 1 , υ ) τ n ( ϖ 0 , ϖ 1 , υ ) + τ n 1 ( 1 τ ) + τ n 2 ( 1 τ ) + + τ ( 1 τ ) + ( 1 τ )
τ n ( ϖ 0 , ϖ 1 , υ ) + ( τ n 1 + τ n 2 + + 1 ) ( 1 τ ) τ n ( ϖ 0 , ϖ 1 , υ ) + ( 1 τ n )
We obtain
1 τ n ( ϖ 0 , ϖ 1 , υ ) + ( 1 τ n ) ( ϖ n , ϖ n + 1 , υ )  
and
( ϖ n , ϖ n + 1 , υ ) = ( ξ ϖ n 1 , ξ ϖ n , υ ) τ ( ϖ n 1 , ϖ n , υ ) = τ ( ξ ϖ n 2 , ξ ϖ n 1 , υ )
τ 2 ( ϖ n 2 , ϖ n 1 , υ ) τ n ( ϖ 0 , ϖ 1 , υ )  
for any λ ,   using   ( IFDL 5 )   and   ( IFDL 10 ) , we deduce
( ϖ n , ϖ n + λ , υ ) ( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + λ , υ 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ n + 2 , ϖ n + λ , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
( ϖ n + 3 , ϖ n + λ , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
( ϖ n + 3 , ϖ n + 4 , υ ( 2 ) 4 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) П ( ϖ n + 3 , ϖ n + 4 ) ) )
( ϖ n + λ 2 , ϖ n + λ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
( ϖ n + λ 1 , ϖ n + λ , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
and
( ϖ n , ϖ n + λ , υ ) ( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + λ , υ 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ n + 2 , ϖ n + λ , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
  ( ϖ n + 3 , ϖ n + λ , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) ) )
( ϖ n , ϖ n + 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   ( ϖ n + 1 , ϖ n + 2 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  ( ϖ n + 2 , ϖ n + 3 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
  ( ϖ n + 3 , ϖ n + 4 , υ ( 2 ) 4 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) П ( ϖ n + 3 , ϖ n + 4 ) ) )
( ϖ n + λ 2 , ϖ n + λ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
  ( ϖ n + λ 1 , ϖ n + λ , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
( ϖ n , ϖ n + λ , υ ) 1 τ n ( ϖ 0 , ϖ 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) ) + ( 1 τ n ) 1 τ n + 1 ( ϖ 0 , ϖ 1 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) ) + ( 1 τ n + 1 )
1 τ n + 2 ( ϖ 0 , ϖ 1 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) ) + ( 1 τ n + 2 )
1 τ n + λ 2 ( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) ) + ( 1 τ n + λ 2 )
1 τ n + λ 1 ( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) ) + ( 1 τ n + λ 1 )
and
( ϖ n , ϖ n + λ , υ ) τ n ( ϖ 0 , ϖ 1 , υ 2 ( П ( ϖ n , ϖ n + 1 ) ) )   τ n + 1 ( ϖ 0 , ϖ 1 , υ ( 2 ) 2 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) П ( ϖ n + 1 , ϖ n + 2 ) ) )
  τ n + 2 ( ϖ 0 , ϖ 1 , υ ( 2 ) 3 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) П ( ϖ n + 2 , ϖ n + 3 ) ) )
τ n + λ 2 ( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + λ 2 , ϖ n + λ ) П ( ϖ n + λ 2 , ϖ n + λ 1 ) ) )
  τ n + λ 1 ( ϖ 0 , ϖ 1 , υ ( 2 ) λ 1 ( Ƹ ( ϖ n + 1 , ϖ n + λ ) Ƹ ( ϖ n + 2 , ϖ n + λ ) Ƹ ( ϖ n + 3 , ϖ n + λ ) Ƹ ( ϖ n + λ 1 , ϖ n + λ ) ) )
Therefore,
lim n ( ϖ n , ϖ n + λ , υ ) = 1 1 1 = 1
and
lim n ( ϖ n , ϖ n + λ , υ ) = 0     0     0 = 0
.
That is, { ϖ n } is a CS. Therefore, let ( Ξ , , , , ) be a complete IFDCMLS, so there exists ϖ in Ξ . Now investigate that ϖ is an FP of ξ, using ( IFDL 5 )   and   ( IFDL 10 ) , we have
1 ( ξ ϖ n , ξ ϖ , υ ) 1 τ [ 1 ( ϖ n , ϖ , υ ) 1 ] = τ ( ϖ n , ϖ , υ ) τ
1 τ ( ϖ n , ϖ , υ ) + ( 1 τ ) ( ξ ϖ n , ξ ϖ , υ ) .
Using the above inequality,
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 П ( ϖ , ϖ n + 1 ) ) ( ϖ n + 1 , ξ ϖ , υ 2 Ƹ ( ϖ n + 1 , ξ ϖ ) )
( ϖ , ϖ n + 1 , υ 2 П ( ϖ , ϖ n + 1 ) ) ( ξ ϖ n , ξ ϖ , υ 2 Ƹ ( ϖ n + 1 , ξ ϖ ) )
( ϖ n , ϖ n + 1 , υ ( 2 П ( ϖ , ϖ n + 1 ) ) ) 1 τ ( ϖ n , ϖ , υ 2 Ƹ ( ϖ n + 1 , ξ ϖ ) ) + ( 1 τ ) 1 1 = 1
as   n , and
( ϖ , ξ ϖ , υ ) ( ϖ , ϖ n + 1 , υ 2 П ( ϖ , ϖ n + 1 ) )   ( ϖ n + 1 , ξ ϖ , υ 2 Ƹ ( ϖ n + 1 , ξ ϖ ) )
( ϖ , ϖ n + 1 , υ 2 П ( ϖ , ϖ n + 1 ) )   ( ξ ϖ n , ξ ϖ , υ 2 Ƹ ( ϖ n + 1 , ξ ϖ ) )
( ϖ n , ϖ n + 1 , υ 2 П ( ϖ , ϖ n + 1 ) )   τ ( ϖ n , ϖ , υ 2 Ƹ ( ϖ n + 1 , ξ ϖ ) ) 0     0 = 0   as   n
That is ξ ϖ = ϖ .
Uniqueness: Suppose another FP, i.e., ξ ρ = ρ for some ρ Ξ , then we have
1 ( ϖ , ρ , υ ) 1 = 1 ( ξ ϖ , ξ ρ , υ ) 1
τ [ 1 ( ϖ , ρ , υ ) 1 ] < 1 ( ϖ , ρ , υ ) 1
a contradiction, and
( ϖ , ρ , υ ) = ( ξ ϖ , ξ ρ , υ ) τ ( ϖ , ρ , υ ) < ( ϖ , ρ , υ )
a contradiction. Therefore, we must have ( ϖ , ρ , υ ) = 1   and   ( ϖ , ρ , υ ) = 0 , hence ϖ = ρ . □
Example 4.
Let Ξ = [ 0 ,   1 ]   a n d   П , Ƹ : Ξ × Ξ [ 1 , )  be non-comparable functions defined by
П ( ϖ , ϱ ) = { 1   i f   ϖ = ϱ , 1 + m a x { ϖ , ϱ } m i n { ϖ , ϱ }   i f   ϖ ϱ
and
Ƹ ( ϖ , ϱ ) = { 1   i f   ϖ = ϱ , 1 + m a x { ϖ 2 , ϱ 2 } m i n { ϖ 2 , ϱ 2 }   i f   ϖ ϱ .
Define , : Ξ × Ξ × ( 0 , ) [ 0 , 1 ] as
( ϖ , ϱ , υ ) = υ υ + m a x { ϖ ,   ϱ } 2 ,   ( ϖ , ϱ , υ ) = m a x { ϖ ,   ϱ } 2 υ + m a x { ϖ ,   ϱ } 2 .
Then, ( Ξ , , , , ) is a complete IFDCMS with CTN ς ɷ = ς ɷ and CTCN ς     ɷ = m a x { ς , ɷ } .
Define ξ : Ξ Ξ   b y   ξ ( ϖ ) = 1 2 ϖ 3 and take τ [ 1 2 , 1 ) , then
( ξ ϖ , ξ ϱ , τ υ ) = ( 1 2 ϖ 3 , 1 2 ϱ 3 , τ υ )
= τ υ τ υ + m a x { 1 2 ϖ 3 , 1 2 ϱ 3 } 2 υ υ + m a x { ϖ ,   ϱ } 2 = ( ϖ , ϱ , υ )
and
( ξ ϖ , ξ ϱ , τ υ ) = ( 1 2 ϖ 3 , 1 2 ϱ 3 , τ υ )
= m a x { 1 2 ϖ 3 , 1 2 ϱ 3 } 2 τ υ + m a x { 1 2 ϖ 3 , 1 2 ϱ 3 } 2 m a x { ϖ ,   ϱ } 2 υ + m a x { ϖ ,   ϱ } 2 = ( ϖ , ϱ , υ ) .
This is seen in Figure 5 and Figure 6, which depict the behavior of contraction mapping.
Hence, all conditions of Theorem 1 are satisfied and 0 is a unique FP for ξ as shown in Figure 7.

4. Application to an Integral Equation

Suppose Ξ = C ( [ ϑ ,   μ ] ,   ) is a set of all the real-valued continuous functions on the closed interval [ ϑ ,   μ ] .
Suppose the following integral equation:
ϖ ( γ ) = η ( j ) + δ ϑ μ F ( γ ,   j ) ϖ ( γ ) Δ j   for   γ ,   j     [ ϑ ,   μ ]
where δ > 0 , F Ξ and η ( j ) is a fuzzy function of j : j [ ϑ , μ ] . Now, we define   and   by
( ϖ ( γ ) ,   ϱ ( γ ) ,   υ ) = sup γ [ ϑ ,   μ ] υ υ + max { ϖ ( γ ) ,   ϱ ( γ ) } 2   for   all   ϖ ,   ϱ Ξ   and   υ > 0
and
( ϖ ( γ ) ,   ϱ ( γ ) ,   υ ) = 1 sup γ [ ϑ ,   μ ] υ υ + max { ϖ ( γ ) ,   ϱ ( γ ) } 2   for   all   ϖ ,   ϱ Ξ   and   υ > 0
with CTN and CTCN defined by ς ɷ = ς . ɷ   and   ς     ɷ = m a x { ς , ɷ } . Define П , Ƹ : Ξ × Ξ [ 1 , ) as
П ( ϖ , ϱ ) = { 1   if   ϖ = ϱ ; 1 + max { ϖ , ϱ } min { ϖ , ϱ }   if   ϖ ϱ 0 ;
Ƹ ( ϖ , ϱ ) = { 1   if   ϖ = ϱ , 1 + max { ϖ 2 , ϱ 2 } min { ϖ 2 , ϱ 2 }   if   ϖ ϱ .
Then, let ( Ξ , , , , ) be a complete IFDCMLS.
Let max { F ( γ ,   j ) ϖ ( γ ) ,   F ( γ ,   j ) ϱ ( γ ) } 2 max { ϖ ( γ ) , ϱ ( γ ) } 2 for all ϖ ,   ϱ Ξ , τ     ( 0 ,   1 ) and for all γ ,   j     [ ϑ ,   μ ] . Additionally, suppose ( δ ϑ μ Δ j ) 2 τ < 1 . Then, integral Equation (9) has a unique solution.
Proof. 
Define ξ : Ξ Ξ by
ξ ϖ ( γ ) = η ( j ) + δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j   for   all   γ ,   j     [ ϑ ,   μ ]
For all ϖ ,   ϱ Ξ , we obtain
( ξ ϖ ( γ ) ,   ξ ϱ ( γ ) , τ   υ ) = sup γ [ ϑ ,   μ ] τ υ τ υ + max { ξ ϖ ( γ ) ,   ξ ϱ ( γ ) } 2
= sup γ [ ϑ ,   μ ] τ υ τ υ + max { η ( j ) + δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j ,   η ( j ) + δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j } 2
= sup γ [ ϑ ,   μ ] τ υ τ υ + max { δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j ,   δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j } 2
= sup γ [ ϑ ,   μ ] τ υ τ υ + max { F ( γ ,   j ) ϖ ( γ ) ,   F ( γ ,   j ) ϱ ( γ ) } 2 ( δ ϑ μ Δ j ) 2
sup γ [ ϑ ,   μ ] υ υ + max { ϖ ( γ ) ,   ϱ ( γ ) } 2
( ϖ ( γ ) ,   ϱ ( γ ) ,   υ ) .
( ξ ϖ ( γ ) ,   ξ ϱ ( γ ) , τ   υ ) = 1 sup γ [ ϑ ,   μ ] τ υ τ υ + max { ξ ϖ ( γ ) ,   ξ ϱ ( γ ) } 2
= 1 sup γ [ ϑ ,   μ ] τ υ τ υ + max { η ( j ) + δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j ,   η ( j ) + δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j } 2
= 1 sup γ [ ϑ ,   μ ] τ υ τ υ + max { δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j ,   δ ϑ μ F ( γ ,   j ) ϑ ( γ ) Δ j } 2
= 1 sup γ [ ϑ ,   μ ] τ υ τ υ + max { F ( γ ,   j ) ϖ ( γ ) ,   F ( γ ,   j ) ϱ ( γ ) } 2 ( δ ϑ μ Δ j ) 2
1 sup γ [ ϑ ,   μ ] υ υ + max { ϖ ( γ ) ,   ϱ ( γ ) } 2
( ϖ ( γ ) ,   ϱ ( γ ) ,   υ ) .
Observe that all the conditions of Theorem 1 are satisfied. Hence, the integral Equation (9) has a unique solution. □

5. Conclusions

In this paper, we introduced the notion of an IFDCMLS. In this new setting, we established a number of new types of FP theorems. In order to demonstrate the viability of the suggested methods, we provided non-trivial examples together with their graphs. This research is supported by an application that demonstrates how the created methodology outperforms the methods that are based on the literature, since our structure is more general than the class of previously published results. It is easy to extend this research to the structure of intuitionistic fuzzy triple-controlled metric-like spaces, neutrosophic double-controlled metric-like spaces, and neutrosophic triple-controlled metric-like spaces. In the future, we will work on more than one self-mapping to find the existence and uniqueness of a fixed point in different generalized fuzzy metric structures.

Author Contributions

Conceptualization, U.I., N.S., F.U. and K.A.; Formal analysis, U.I., N.S., F.U. and K.A.; Investigation, N.S. and F.U.; Methodology, U.I., N.S., F.U. and K.A.; Supervision, S.S. and F.d.M.; Validation, S.S. and F.d.M.; Writing—original draft, K.A.; Writing—review & editing, U.I. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

On request, the data used to support the findings of this study can be obtained from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviation are used in this study.
FSsFuzzy sets
FMSsFuzzy metric spaces
CTNContinuous triangular norm
CTCNContinuous triangular co-norm
IFMSsIntuitionistic fuzzy metric spaces
MLSsMetric-like spaces
CMLSsControlled metric-like spaces
FMLSsFuzzy metric-like spaces
IFDMSsIntuitionistic fuzzy double-controlled metric spaces
IFDCMLSsIntuitionistic fuzzy double-controlled metric-like spaces
FPFixed point
FDMSsFuzzy double-controlled metric spaces

References

  1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  3. Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math. 1960, 10, 314–334. [Google Scholar] [CrossRef] [Green Version]
  4. Kramosil, I.; Michlek, J. Fuzzy metric and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
  5. George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
  6. George, A.; Veeramani, P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 1997, 90, 365–368. [Google Scholar] [CrossRef]
  7. Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Set Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
  8. Harandi, A. Metric-like paces, partial metric spaces and fixed point. Fixed Point Theory Appl. 2012, 204. [Google Scholar] [CrossRef] [Green Version]
  9. Mlaiki, N. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
  10. Mlaiki, N.; Souayah, N.; Abdeljawad, T.; Aydi, H. A new extension to the controlled metric type spaces endowed with a graph. Adv. Differ. Equ. 2021, 94. [Google Scholar] [CrossRef]
  11. Shukla, S.; Abbas, M. Fixed point results in fuzzy metric-like spaces. Iran. J. Fuzzy Syst. 2014, 11, 81–92. [Google Scholar]
  12. Javed, K.; Uddin, F.; Aydi, H.; Arshad, M.; Ishtiaq, U.; Alsamir, H. On Fuzzy b-Metric-Like Spaces. J. Funct. Spaces 2021. [Google Scholar] [CrossRef]
  13. Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
  14. Konwar, N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. J. Intell. Fuzzy Syst. 2020, 39, 7831–7841. [Google Scholar] [CrossRef]
  15. Shatanawi, W.; Gupta, V.; Kanwar, A. New results on modified intuitionistic generalized fuzzy metric spaces by employing E.A property and common E.A property for coupled maps. J. Intell. Fuzzy Syst. 2020, 38, 3003–3010. [Google Scholar] [CrossRef]
  16. Gupta, V.; Saini, R.K.; Kanwar, A. Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and application to integral type contraction. Iran. J. Fuzzy Syst. 2017, 14, 123–137. [Google Scholar]
  17. Sezen, M.S. Controlled fuzzy metric spaces and some related fixed point results. Numer. Methods Partial. Differ. Equ. 2021, 37, 583–593. [Google Scholar] [CrossRef]
  18. Saleem, N.; Isik, H.; Furqan, S.; Park, C. Fuzzy double controlled metric spaces. J. Intell. Fuzzy Syst. 2021, 40, 9977–9985. [Google Scholar] [CrossRef]
  19. Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 1979, 67, 261–273. [Google Scholar] [CrossRef] [Green Version]
  20. Rafi, M.; Noorani, M.S.M. Fixed theorems on intuitionistic fuzzy metric space. Iran. J. Fuzzy Syst. 2006, 3, 23–29. [Google Scholar]
  21. Sintunavarat, W.; Kumam, P. Fixed Theorems for a Generalized Intuitionistic Fuzzy Contraction in Intuitionistic Fuzzy Metric Spaces. Thai J. Math. 2012, 10, 123–135. [Google Scholar]
  22. Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 29, 1073–1078. [Google Scholar] [CrossRef]
  23. Mohamad, A. Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2007, 34, 1689–1695. [Google Scholar] [CrossRef]
  24. Dey, D.; Saha, M. An extension of Banach fixed point theorem in fuzzy metric space. Bol. Soc. Parana. Mat. 2014, 32, 299–304. [Google Scholar] [CrossRef] [Green Version]
  25. Farheen, M.; Ahmed, K.; Javed, K.; Parvaneh, V.; Ud Din, F.; Ishtiaq, U. Intuitionistic Fuzzy Double Controlled Metric Spaces and Related Results. Secur. Commun. Netw. 2022, 2022, 6254055. [Google Scholar] [CrossRef]
  26. Peng, F.; Wang, Y.; Xuan, H.; Nguyen, T.V. Efficient road traffic anti-collision warning system based on fuzzy nonlinear programming. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 456–461. [Google Scholar] [CrossRef]
  27. Nguyen, T.V.; Huynh, N.T.; Vu, N.C.; Kieu, V.N.; Huang, S.C. Optimizing compliant gripper mechanism design by employing an effective bi-algorithm: Fuzzy logic and ANFIS. Microsyst. Technol. 2021, 27, 3389–3412. [Google Scholar] [CrossRef]
  28. Wang, C.N.; Yang, F.C.; Nguyen, V.T.T.; Vo, N.T. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Micromachines 2022, 13, 1208. [Google Scholar] [CrossRef]
  29. Uddin, F.; Ishtiaq, U.; Hussain, A.; Javed, K.; Al Sulami, H.; Ahmed, K. Neutrosophic Double Controlled Metric Spaces and Related Results with Application. Fractal Fract. 2022, 6, 318. [Google Scholar] [CrossRef]
  30. Mustafa, Z.; Parvaneh, V.; Abbas, M.; Roshan, J.R. Some coincidence point results for generalized (ψ,φ)-weakly contractive mappings in ordered G-metric spaces. Fixed Point Theory Appl. 2013, 326. [Google Scholar] [CrossRef]
Figure 1. The graphical behavior of the functions P   and   with υ = 2 , where the yellow color represents P ' s behavior and the blue color represents behavior of .
Figure 1. The graphical behavior of the functions P   and   with υ = 2 , where the yellow color represents P ' s behavior and the blue color represents behavior of .
Symmetry 14 02364 g001
Figure 2. The graphical behavior of the functions P   and   with υ = 2 , where the yellow color represents P ' s behavior and the blue color represents behavior of .
Figure 2. The graphical behavior of the functions P   and   with υ = 2 , where the yellow color represents P ' s behavior and the blue color represents behavior of .
Symmetry 14 02364 g002
Figure 3. The graphical behavior of the P and functions with n = 10 and υ = 2 , in which the yellow color depicts P ' s behavior and the blue color depicts behavior of .
Figure 3. The graphical behavior of the P and functions with n = 10 and υ = 2 , in which the yellow color depicts P ' s behavior and the blue color depicts behavior of .
Symmetry 14 02364 g003
Figure 4. The graphical behavior of the P and functions with n = 1 and υ = 2 , in which the yellow color depicts P ' s behavior and the blue color depicts behavior of .
Figure 4. The graphical behavior of the P and functions with n = 1 and υ = 2 , in which the yellow color depicts P ' s behavior and the blue color depicts behavior of .
Symmetry 14 02364 g004
Figure 5. The graphical behavior of ( ξ ϖ , ξ ϱ , τ υ ) ( ϖ , ϱ , υ ) , where the yellow color shows the left-hand side and the blue color shows the right-hand side, when υ = 10 and τ = 0.5 .
Figure 5. The graphical behavior of ( ξ ϖ , ξ ϱ , τ υ ) ( ϖ , ϱ , υ ) , where the yellow color shows the left-hand side and the blue color shows the right-hand side, when υ = 10 and τ = 0.5 .
Symmetry 14 02364 g005
Figure 6. The graphical behavior of ( ξ ϖ , ξ ϱ , τ υ ) ( ϖ , ϱ , υ ) , where the yellow color shows the left-hand side and the blue color shows the right-hand side, when υ = 10 and τ = 0.5 .
Figure 6. The graphical behavior of ( ξ ϖ , ξ ϱ , τ υ ) ( ϖ , ϱ , υ ) , where the yellow color shows the left-hand side and the blue color shows the right-hand side, when υ = 10 and τ = 0.5 .
Symmetry 14 02364 g006
Figure 7. Shows that the FP of ξ is 0 and is unique.
Figure 7. Shows that the FP of ξ is 0 and is unique.
Symmetry 14 02364 g007
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ishtiaq, U.; Saleem, N.; Uddin, F.; Sessa, S.; Ahmad, K.; di Martino, F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry 2022, 14, 2364. https://doi.org/10.3390/sym14112364

AMA Style

Ishtiaq U, Saleem N, Uddin F, Sessa S, Ahmad K, di Martino F. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry. 2022; 14(11):2364. https://doi.org/10.3390/sym14112364

Chicago/Turabian Style

Ishtiaq, Umar, Naeem Saleem, Fahim Uddin, Salvatore Sessa, Khaleel Ahmad, and Ferdinando di Martino. 2022. "Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application" Symmetry 14, no. 11: 2364. https://doi.org/10.3390/sym14112364

APA Style

Ishtiaq, U., Saleem, N., Uddin, F., Sessa, S., Ahmad, K., & di Martino, F. (2022). Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry, 14(11), 2364. https://doi.org/10.3390/sym14112364

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop