A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonyah, E.; Chukwu, C.W.; Juga, M.L.; Fatmawati. Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Math. 2021, 6, 8367–8389. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Shah, K.; Abdeljawad, T.; Alqudah, M.A. Existence of results and computational analysis of a fractional order two strain epidemic model. Res. Phys. 2022, 39, 105649. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Asamoah, J.K.K.; Okyere, E.; Yankson, E.; Opoku, A.A.; Adom-Konadu, A.; Acheampong, E.; Arthur, Y.D. Non-fractional and fractional mathematical analysis and simulations for Q fever. Chaos Solitons Fractals 2022, 156, 111821. [Google Scholar] [CrossRef]
- Wu, Y.; Ahmad, S.; Ullah, A.; Shah, K. Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl. Eng. 2022, 2022, 7286460. [Google Scholar] [CrossRef]
- Etemad, S.; Avcı, İ.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Najafi, H.; Etemad, S.; Patanarapeelert, N.; Asamoah, J.K.K.; Rezapour, S.; Sitthiwirattham, T. A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials. Mathematics 2022, 10, 1366. [Google Scholar] [CrossRef]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 2021, 44, 8414–8431. [Google Scholar] [CrossRef]
- Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.-M.; Dong, C. Fractional generalized Hadamard and Fejer-Hadamard inequalities for m-convex functions. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Yussouf, M.; Farid, G.; Khan, K.A. Hadamard and Fejer-Hadamard inequalities for (α, h − m) − p-convex functions via Riemann-Liouville fractional integrals. Math. Probl. Eng. 2021, 2021, 9945114. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Saleem, M.S.; Ahmad, I.; Waheed, S.; Pan, L. Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Math. 2021, 6, 6377–6389. [Google Scholar] [CrossRef]
- El Shahed, M. Fractional Calculus Model of Semilunar Heart Valve Vibrations; International Mathematica Symposium: London, UK, 2003. [Google Scholar]
- Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000; pp. 87–130. [Google Scholar]
- Hu, G.-J.; Rasid, S.; Farooq, F.B.; Sultana, S. Some inequalities for a new class of convex functions with applications via local fractional integral. J. Funct. Spaces 2021, 2021, 6663971. [Google Scholar] [CrossRef]
- Khan, K.A.; Ditta, A.; Nosheen, A.; Awan, K.M.; Mabela, R.M. Ostrowski type inequalities for s-convex functions via q-integrals. J. Funct. Spaces 2022, 2022, 8063803. [Google Scholar] [CrossRef]
- Rashid, S.; Işcan, I.; Baleanu, D.; Chu, Y.-M. Generation of new fractional inequalities via n-polynomials s-type convexity with applications. Adv. Differ. Equ. 2020, 2020, 264. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Kashuri, A.; Agarwal, R.P.; Mohammed, P.O.; Nonlaopon, K.; Abualnaja, K.M.; Hamed, Y.S. New generalized class of convex functions and some related integral inequalities. Symmetry 2022, 14, 722. [Google Scholar] [CrossRef]
- Ma, Y.; Saleem, M.S.; Bashir, I.; Xiao, Y. Schur, Hermite-Hadamard, and Fejer type inequalities for the class of higher-order generalized convex functions. J. Funct. Spaces 2022, 2022, 8575563. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
- Sun, W. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities. J. Nonlinear Sci. Appl. 2017, 10, 5869–5880. [Google Scholar] [CrossRef] [Green Version]
- Aljaaidi, T.A.; Pachpatte, D.B. The Hermite-Hadamard-Mercer type inequalities via generalized proportional fractional integral concerning another function. Int. J. Math. Math. Sci. 2022, 2022, 6716830. [Google Scholar] [CrossRef]
- Bounoua, M.D.; Tang, J. On some Volterra-Fredholm and Hermite-Hadamard-type fractional integral inequalities. J. Inequal. Appl. 2022, 2022, 36. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for k-fractional integrals. Konuralp J. Math. 2016, 4, 79–86. [Google Scholar]
- Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; North-Holland Mathematics Studies: 204; Elsevier: New York, NY, USA; London, UK, 2006. [Google Scholar]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Wu, S.; Samraiz, M.; Mehmood, A.; Jarad, F.; Naheed, S. Some symmetric properties and applications of weighted fractional integral operator. Symmetry 2022. submitted. [Google Scholar] [CrossRef]
- Farid, G. Study of a generalized Riemann-Liouville fractional integral via convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 37–48. [Google Scholar] [CrossRef]
- Farid, G.; Nazeer, W.; Saleem, M.S.; Mehmood, S.; Kang, S.M. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications. Mathematics 2018, 6, 248. [Google Scholar] [CrossRef]
- Farid, G. Some Riemann-Liouville fractional integral inequalities for convex functions. J. Anal. 2019, 27, 1095–1102. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samraiz, M.; Malik, M.; Saeed, K.; Naheed, S.; Etemad, S.; De la Sen, M.; Rezapour, S. A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications. Symmetry 2022, 14, 2682. https://doi.org/10.3390/sym14122682
Samraiz M, Malik M, Saeed K, Naheed S, Etemad S, De la Sen M, Rezapour S. A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications. Symmetry. 2022; 14(12):2682. https://doi.org/10.3390/sym14122682
Chicago/Turabian StyleSamraiz, Muhammad, Maria Malik, Kanwal Saeed, Saima Naheed, Sina Etemad, Manuel De la Sen, and Shahram Rezapour. 2022. "A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications" Symmetry 14, no. 12: 2682. https://doi.org/10.3390/sym14122682
APA StyleSamraiz, M., Malik, M., Saeed, K., Naheed, S., Etemad, S., De la Sen, M., & Rezapour, S. (2022). A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications. Symmetry, 14(12), 2682. https://doi.org/10.3390/sym14122682