Modeling of Satellite-to-Underwater Integrated FSO-PON System Using NOMA-VLC
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivations
1.3. Contributions
- Although the hybrid FSO-PON system is a promising solution for 6G long-haul networks, a satellite-to-underwater-based hybrid FSO-PON using a NOMA-VLC system still has not been addressed in terms of data privacy or security scenarios in the recent literature;
- A NOMA-VLC system has been utilized with a hybrid FSO-PON system employing MNZCC OCDMA code, where the justifiable secure communication is carried over PON, FSO and VLC links, simultaneously;
- The broadcasting information transmission in water undergoes turbulence and scattering with absorption losses. Thus, to attract more insightful recommendations about the suggested system, three distinct ocean water types, namely clear, coastal and turbid harbor, are studied;
- Additionally, the effect of UOWC VLC link losses, fiber impairments like nonlinearities, noise, attenuation, dispersion etc., are also measured through numerical and simulation analyses;
- The designed model is verified through a comparison of its performance with existing works.
2. System Design
2.1. Downstream Design
2.2. Upstream Design
3. Numerical Analysis
3.1. Channel Model
3.2. BER Performance Analysis
3.3. Impact of Losses
- Geometric loss (GL): GL in FSO links rises owing to the transmitted beam spreading between transmitter and receiver. However, smaller transmitter divergences and larger receiver apertures over an FSO link range (Z in km) and divergence ( in mrad) cause minimum GL. In general, GL (in dB) is given as [11,43,44,45]:
- Chromatic dispersion (CD): In the fiber-VLC link the CD, in (ps/nm) at a referred wavelength of 1550 nm is presented as below [46]:
- Impact of ISI: ISI owing to the existence of overlapped contiguous bit intervals optical pulses, cause pulse broadening represented as Δb as [46]:
- Impact of FWM: The full range of FWM wavelengths () for i wavelength links in the proposed system is presented as [47]:
3.4. Sensitivity of Receiver
3.5. Power Budget
3.6. Impact of Channels
4. Results and Discussion
- For performance analysis, the effect of fiber, FSO and VLC channels deteriorations, such as ISI, CD, FWM, noise (thermal, shot etc.), beam divergence as well as geometric loss, are considered;
- To measure the performance in PON, FSO and VLC, various different DN and UP wavelengths are selected, i.e., 1596 nm (DN) and 1527.2 nm (UP) for TWDM-PON; 1575 nm (DN) and 1260 nm (UP) for WDM-OCDMA; 1550 nm (both DN and UP) for FSO; and 625 nm, 525 nm and 455 nm (both DN and UP) for NOMA-VLC channels with 0.2 power allocation coefficient;
- The environmental conditions for satellite-to-land communication using FSO links and underwater VLC links are considered as clear, except otherwise stated;
- PD’s FOV in NOMA-VLC is considered as 500, except when otherwise stated.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Lin, M.; Kong, H.; Ouyang, J.; Zhu, W.P. Performance Analysis of Mixed FSO-RF Transmission in Multiuser Satellite–Aerial–Terrestrial Networks. Opt. Commun. 2021, 496, 127141. [Google Scholar] [CrossRef]
- Fayad, A.; Cinkler, T.; Rak, J.; Jha, M. Design of Cost-Efficient Optical Fronthaul for 5G/6G Networks: An Optimization Perspective. Sensors 2022, 22, 9394. [Google Scholar] [CrossRef]
- Kumar, L.B.; Krishnan, P. Multi-Hop Convergent FSO-UWOC System to Establish a Reliable Communication Link between the Islands. Opt. Commun. 2020, 474, 126107. [Google Scholar] [CrossRef]
- Shi, Y.; Armghan, A.; Ali, F.; Aliqab, K.; Alsharari, M. Enriching Capacity and Transmission of Hybrid WDM-FSO Link for 5G Mobility. Photonics 2023, 10, 121. [Google Scholar] [CrossRef]
- Aboelala, O.; Lee, I.E.; Chung, G.C. A Survey of Hybrid Free Space Optics (FSO) Communication Networks to Achieve 5G Connectivity for Backhauling. Entropy 2022, 24, 1573. [Google Scholar] [CrossRef]
- Dixit, V.; Kumar, A. BER Analysis of Dynamic FOV Based MIMO-NOMA-VLC System. AEU-Int. J. Electron. Commun. 2021, 142, 153989. [Google Scholar] [CrossRef]
- Pradhan, J.; Holey, P.; Kappala, V.K.; Das, S.K. Performance Analysis of ACO-OFDM NOMA for VLC Communication. Opt. Quantum Electron. 2022, 54, 531. [Google Scholar] [CrossRef]
- Irawan, A.; Abas, M.F.; Hasan, N. Robot Local Network Using TQS Protocol for Land-to-Underwater Communications. J. Telecommun. Inf. Technol. 2019, 1, 23–30. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Jiang, S.-Y.; Hsieh, S.-E.; Yeh, C.-H.; Lai, Y.-T.; Chen, L.-Y.; Liaw, S.-K.; Chow, C.-W. Hybrid Self-Protected Fiber-FSO WDM-PON System with Fiber Breakage Prevention. Photonics 2022, 9, 822. [Google Scholar] [CrossRef]
- El-Nahal, F.; Xu, T.; AlQahtani, D.; Leeson, M. A Bidirectional Wavelength Division Multiplexed (WDM) Free Space Optical Communication (FSO) System for Deployment in Data Center Networks (DCNs). Sensors 2022, 22, 9703. [Google Scholar] [CrossRef]
- Kumari, M.; Sharma, R.; Sheetal, A. Performance Analysis of High Speed Backward Compatible TWDM-PON with Hybrid WDM–OCDMA PON Using Different OCDMA Codes. Opt. Quantum Electron. 2020, 52, 482. [Google Scholar] [CrossRef]
- Butt, R.A.; Idrus, S.M.; Zulkifli, N.; Waqar Ashraf, M. Comprehensive Bandwidth Utilization and Polling Mechanism for XGPON. Int. J. Commun. Syst. 2018, 31, e3475. [Google Scholar] [CrossRef]
- Morsy, M.A.; Alsayyari, A.S. Performance Analysis of Coherent BPSK-OCDMA Wireless Communication System. Wirel. Netw. 2020, 26, 4491–4505. [Google Scholar] [CrossRef]
- Deka, R.; Verma, A.; Anees, S. Performance Analysis of Decode-and-Forward Based Hybrid RF/FSO-VLC System. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–18 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Deka, R.; Anees, S. Performance Analysis of DF Based Mixed VLC-FSO-VLC System. In Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Bangalore, India, 19–24 July 2020. [Google Scholar]
- Pesek, P.; Zvanovec, S.; Chvojka, P.; Ghassemlooy, Z.; Haigh, P.A. Demonstration of a Hybrid FSO/VLC Link for the Last Mile and Last Meter Networks. IEEE Photonics J. 2019, 11, 1–7. [Google Scholar] [CrossRef]
- Vats, A.; Aggarwal, M.; Ahuja, S. Outage and Error Analysis of Three Hop Hybrid VLC/FSO/VLC–Based Relayed Optical Wireless Communication System. Trans. Emerg. Telecommun. Technol. 2019, 30, e3544. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T.; Nasr, M.E. Enhancing Earth-to-Satellite FSO System Spectrum Efficiency with Adaptive M-Ary PSK and SIMO in Presence of Scintillation and Beam Wander. AEU-Int. J. Electron. Commun. 2020, 125, 153366. [Google Scholar] [CrossRef]
- Kong, H.; Lin, M.; Zhu, W.P.; Amindavar, H.; Alouini, M.S. Multiuser Scheduling for Asymmetric FSO/RF Links in Satellite-UAV-Terrestrial Networks. IEEE Wirel. Commun. Lett. 2020, 9, 1235–1239. [Google Scholar] [CrossRef]
- Chaudhry, A.U.; Yanikomeroglu, H. Free Space Optics for Next-Generation Satellite Networks. IEEE Consum. Electron. Mag. 2021, 10, 21–31. [Google Scholar] [CrossRef]
- Kachhatiya, V.; Prince, S. Four-Fold Increase in Users of Time-Wavelength Division Multiplexing (TWDM) Passive Optical Network (PON) by Delayed Optical Amplitude Modulation (AM) Upstream. Opt. Fiber Technol. 2016, 32, 71–81. [Google Scholar] [CrossRef]
- Mostafa, S.; Mohamed, A.E.A. Performance Evaluation of SAC-OCDMA System in Free Space Optics and Optical Fiber System Based on Different Types of Codes. Wirel. Pers. Commun. 2017, 96, 2843–2861. [Google Scholar] [CrossRef]
- Rashidi, C.B.M.; Aljunid, S.A.; Ghani, F.; Fadhil, H.A.; Anuar, M.S. New Design of Flexible Cross Correlation (FCC) Code for SAC- OCDMA System. Procedia Eng. 2013, 53, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Shalaby, H.M.H.; Ghafouri-Shiraz, H. Modified Quadratic Congruence Codes for Fiber Bragg-Grating-Based Spectral-Amplitude-Coding Optical CDMA Systems. J. Light. Technol. 2001, 19, 1274–1281. [Google Scholar]
- Cao, Y.; Gan, C. A Scalable Hybrid WDM/OCDMA-PON Based on Wavelength-Locked RSOA Technology. Optik 2012, 123, 176–180. [Google Scholar] [CrossRef]
- Hussein, T.; Aljunid, S.A.; Adnan, H.; Ahmad, R.A.; Saad, N.M. Optical Fiber Technology Development of a New Code Family Based on SAC-OCDMA System with Large Cardinality for OCDMA Network. Opt. Fiber Technol. 2011, 17, 273–280. [Google Scholar] [CrossRef]
- Samanta, S.; Maity, G.K.; Mukhopadhyay, S. All-Optical Walsh-Hadamard Code Generation Using. In Proceedings of the 2019 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2019; pp. 515–518. [Google Scholar] [CrossRef]
- Rashidi, C.B.M.; Anuar, M.S.; Aljunid, S.A. Study of Direct Detection Technique for Zero Cross Correlation Code in OCDMA. In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE’10), Kuala Lumpur, Malaysia, 11–12 May 2010; pp. 11–13. [Google Scholar] [CrossRef]
- Panda, S. Effect of SHIFTZCC Codes for Optical CDMA System. World Sci. News 2017, 67, 365–389. [Google Scholar]
- Bhanja, U.; Panda, S. Comparison of Novel Coding Techniques for a Fixed Wavelength Hopping SAC-OCDMA. Photonic Netw. Commun. 2017, 33, 179–193. [Google Scholar] [CrossRef]
- Nisar, K.S.; Sarangal, H.; Thapar, S.S. Performance Evaluation of Newly Constructed NZCC for SAC-OCDMA Using Direct Detection Technique. Photonic Netw. Commun. 2019, 37, 75–82. [Google Scholar] [CrossRef]
- Gan, C.Q.; Cao, Y.N. Novel Architecture of WDM/OCDMA-PON Based on SSFBG and Wavelength Re-Modulation Technology. J. Shanghai Univ. 2011, 15, 96–100. [Google Scholar] [CrossRef]
- Kumari, M.; Sharma, R.; Sheetal, A. A Hybrid Next-Generation Passive Optical Network and Visible Light Communication for Future Hospital Applications. Optik 2021, 242, 166978. [Google Scholar] [CrossRef]
- Yeh, C.H.; Xie, Y.R.; Luo, C.M.; Chow, C.W. Integration of FSO Traffic in Ring-Topology Bidirectional Fiber Access Network with Fault Protection. IEEE Commun. Lett. 2020, 24, 589–592. [Google Scholar] [CrossRef]
- Yousif, B.B.; Elsayed, E.E.; Alzalabani, M.M. Atmospheric Turbulence Mitigation Using Spatial Mode Multiplexing and Modified Pulse Position Modulation in Hybrid RF/FSO Orbital-Angular-Momentum Multiplexed Based on MIMO Wireless Communications System. Opt. Commun. 2019, 436, 197–208. [Google Scholar] [CrossRef]
- Huszaník, T.; Turán, J.; Ovseník, Ľ. Simulation of Downlink of 10G-PON FTTH in the City of Košice. Carpathian J. Electron. Comput. Eng. 2018, 11, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Arnon, S. Underwater Optical Wireless Communication Network. Opt. Eng. 2010, 49, 015001. [Google Scholar] [CrossRef]
- Spagnolo, G.S.; Cozzella, L.; Leccese, F. A Brief Survey on Underwater Optical Wireless Communications. In Proceedings of the MetroSea 2020-TC19 International Workshop on Metrology for the Sea, Naples, Italy, 5–7 October 2020; pp. 79–84. Available online: https://www.imeko.org/publications/tc19-Metrosea-2020/ (accessed on 3 February 2023).
- Majumdar, A.K. Free-Space Laser Communication Performance in the Atmospheric Channel. J. Opt. Fiber Commun. Rep. 2005, 2, 345–396. [Google Scholar] [CrossRef]
- Lim, W. BER Analysis of Coherent Free Space Optical Systems with BPSK over Gamma-Gamma Channels. J. Opt. Soc. Korea 2015, 19, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Nguyen, H.T.; Le, H.C.; Nguyen, N.D.; Dang, N.T. Performance Analysis of Gigabit-Capable Mobile Backhaul Networks Exploiting TWDM-PON and Fso Technologies. In Proceedings of the International Conference on Advanced Technologies for Communications, Hanoi, Vietnam, 12–14 October 2016; pp. 180–185. [Google Scholar] [CrossRef]
- Bai, F.; Su, Y.; Sato, T. Performance Analysis of RoFSO Links with Diversity Reception for Transmission of OFDM Signals under Correlated Log-Normal Fading Channels. J. ICT Stand. 2014, 2, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Korevaar, E.; Schuster, J.; Willebrand, H. Understanding the Performance of Free-Space Optics [Invited]. J. Opt. Netw. 2003, 2, 178–200. [Google Scholar]
- Kumari, M.; Sharma, R.; Sheetal, A. Performance Analysis of Long-Reach 40/40 Gbps Mode Division Multiplexing-Based Hybrid Time and Wavelength Division Multiplexing Passive Optical Network/Free-Space Optics Using Gamma-Gamma Fading Model with Pointing Error under Different Weather Conditions. Trans. Emerg. Telecommun. Technol. 2021, 32, e4214. [Google Scholar] [CrossRef]
- Kumari, M.; Arya, V. Investigation of High-Speed Hybrid WDM-OCDMA-PON System Incorporating Integrated Fiber-FSO Link under Distinct Climate Conditions. Opt. Quantum Electron. 2022, 54, 775. [Google Scholar] [CrossRef]
- Agrawal, B.G.P.; Agrawal, G. Applications of Nonlinear Fiber Optics; Elsevier Science: Amsterdam, Netherlands, 2010; ISBN 9780080568768. [Google Scholar]
- Ghosh, C.; Priye, V. Suppression of Four-Wave Mixing in a 22 × 10 Gbps Dense Wavelength Division Multiplexed System by Linearly Chirped Fiber Bragg Gratings. Opt. Quantum Electron. 2019, 51, 5. [Google Scholar] [CrossRef]
- Pagare, R.A.; Kumar, S.; Mishra, A. Design and Analysis of Hybrid Optical Distribution Network for Worst-Case Scenario of E2-Class Symmetric Coexistence 80 Gbps TWDM NG-PON2 Architecture for FTTX Access Networks. Optik 2021, 228, 166168. [Google Scholar] [CrossRef]
- Cherifi, A.; Jellali, N.; Najjar, M.; Aljunid, S.A.; Bouazza, B.S. Development of a Novel Two-Dimensional-SWZCC–Code for Spectral/Spatial Optical CDMA System. Opt. Laser Technol. 2019, 109, 233–240. [Google Scholar] [CrossRef]
- De Moura, U.C.; Oliveira, J.R.F.; Oliveira, J.C.R.F.; Cesar, A.C. EDFA Adaptive Gain Control Effect Analysis over an Amplifier Cascade in a DWDM Optical System. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, Rio de Janeiro, Brazil, 4–7 August 2013. [Google Scholar] [CrossRef]
- Lavrinovica, I.; Porins, J. Noise Figure Analysis of EDFA with Different Pumping Configurations in 40 Gbit/s 8 Channel DWDM Transmission System. In Proceedings of the 2015 Advances in Wireless and Optical Communications, RTUWO 2015, Riga, Latvia, 5–6 November 2015. [Google Scholar] [CrossRef]
- Abd, T.H.; Aljunid, S.A.; Fadhil, H.A. A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems. J. Opt. Commun. 2011, 32, 263–267. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Fayed, H.A.; Ismail, N.E.; Aly, M.H.; Rizk, M.R.M. MDW and EDW/DDW Codes with AND Subtraction/Single Photodiode Detection for High Performance Hybrid SAC-OCDMA/OFDM System. Opt. Quantum Electron. 2020, 52, 239. [Google Scholar] [CrossRef]
- Al-Khafaji, H.M.R.; Aljunid, S.A.; Fadhil, H.A. Spectral Efficiency of Unipolar SAC-OCDMA System Considering Noise Effects. In Proceedings of the 2011 IEEE Symposium on Industrial Electronics and Applications, Langkawi, Malaysia, 25–28 September 2011; pp. 218–222. [Google Scholar] [CrossRef]
- Kumawat, S.; Ravi Kumar, M. Generalized Optical Code Construction for Enhanced and Modified Double Weight like Codes without Mapping for SAC-OCDMA Systems. Opt. Fiber Technol. 2016, 30, 72–80. [Google Scholar] [CrossRef]
- Cantono, M.; Mecozzi, A.; Curri, V.; Gaudino, R. Optimal Polarization Launch for Raman Depletion Minimization in GPON and TWDM-PON Coexistence. In Proceedings of the Optical Fiber Communication Conference, OFC 2015, Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar] [CrossRef]
- Mandal, G.C.; Mukherjee, R.; Das, B.; Patra, A.S. Next-Generation Bidirectional Triple-Play Services Using RSOA Based WDM Radio on Free-Space Optics PON. Opt. Commun. 2018, 411, 138–142. [Google Scholar] [CrossRef]
- Mandal, G.C.; Mukherjee, R.; Das, B.; Patra, A.S. A Full-Duplex WDM Hybrid Fiber-Wired/Fiber-Wireless/Fiber-VLC/Fiber-IVLC Transmission System Based on a Self-Injection Locked Quantum Dash Laser and a RSOA. Opt. Commun. 2018, 427, 202–208. [Google Scholar] [CrossRef]
- He, J.; Dong, H.; Deng, R.; Shi, J.; Chen, L. WDM-CAP-PON Integration with VLLC System Based on Optical Frequency Comb. Opt. Commun. 2016, 374, 127–132. [Google Scholar] [CrossRef]
Code | MNZCC | ||
---|---|---|---|
λdn/λup (nm) | U1 | U2 | U3 |
1575/1260 | 0 | 0 | 1 |
1575.4/1260.4 | 0 | 1 | 0 |
1575.8/1260.8 | 1 | 0 | 0 |
Channel | Parameters | Value | |
---|---|---|---|
SMF | Fiber Range | 0–100 km | |
Attenuation | 0.2 dB/km | ||
Temperature | 300 K | ||
Dispersion | 17 ps/nm/km | ||
Dispersion slope | 0.075 ps/nm2/k | ||
UOWC | VLC Range | 1–15 m | |
Beam divergence angle | 1108 mrad | ||
Attenuation | Clear ocean | 0.21 dB/m | |
Coastal ocean | 0.39 dB/m | ||
Turbid harbor | 11 dB/m | ||
Aperture diameter | Transmitter | 10 cm | |
Receiver | 20 cm | ||
Location co-ordinates | (15, 10, 5) m; (12, 8, 3) m; (5, 10, 15) m | ||
FSO | Loss | Additional | 2 dB |
Transmitter | 2.5 dB | ||
Receiver | 2.5 dB | ||
Beam divergence | 2 mrad | ||
Scintillation model | Gamma-Gamma | Yes | |
Geometric loss | Yes |
Type of Water | (nm) | |||
---|---|---|---|---|
Clear ocean | 450–500 | 0.12 | 0.05 | 0.16 |
Coastal ocean | 520–570 | 0.19 | 0.23 | 0.35 |
Turbid harbor | 550–600 | 0.38 | 1.84 | 2.21 |
(nm) | CD (ps/nm) | ||
---|---|---|---|
DN | TWDM-PON | 1596 | 1100 |
1575 | 1180 | ||
FSO | 1550 | 700 | |
VLC | 625 | 320 | |
525 | 560 | ||
455 | 187 | ||
UP | TWDM-PON | 1527.2 | 990 |
1260 | −180 | ||
FSO | 1550 | 550 | |
VLC | 625 | −250 | |
525 | −240 | ||
455 | −210 |
l (km) | Δ (ps) |
---|---|
10 | 23 |
30 | 39 |
50 | 45 |
70 | 56 |
90 | 67 |
110 | 77 |
Beam Divergence (mrad) | Loss (dB) | TWDM-PON | WDM-OCDMA | |||||
---|---|---|---|---|---|---|---|---|
Tx | Rx | Pr (dBm) | SNR (dB) | log (BER) | Pr (dBm) | SNR (dB) | log (BER) | |
2 | 1 | 1 | 0.98 | 106 | −34 | 0.90 | 102 | −30 |
3 | 2 | 2 | 0.92 | 104 | −31 | 0.88 | 100 | −28 |
4 | 3 | 3 | 0.89 | 100 | −29 | 0.84 | 97 | −26 |
5 | 4 | 4 | 0.84 | 99 | −27 | 0.80 | 94 | −21 |
6 | 5 | 5 | 0.72 | 94 | −22 | 0.77 | 91 | −17 |
Beam Divergence (mrad) | Loss (dB) | TWDM-PON | WDM-OCDMA | |||||
---|---|---|---|---|---|---|---|---|
Tx | Rx | Pr (dBm) | SNR (dB) | log (BER) | Pr (dBm) | SNR (dB) | log (BER) | |
2 | 1 | 1 | 1.20 | 108 | −38 | 0.95 | 105 | −33 |
3 | 2 | 2 | 1.12 | 107 | −36 | 0.92 | 103 | −31 |
4 | 3 | 3 | 1.03 | 104 | −32 | 0.88 | 101 | −29 |
5 | 4 | 4 | 0.98 | 102 | −29 | 0.86 | 98 | −27 |
6 | 5 | 5 | 0.88 | 99 | −26 | 0.82 | 95 | −22 |
Transmission | DN | UP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Distance (km) | 10 | 40 | 70 | 100 | 130 | 10 | 40 | 70 | 100 | 130 |
Transmitted power (dBm) | 10 | 10 | 10 | 10 | 10 | 0 | 0 | 0 | 0 | 0 |
Received power (dBm) | −20 | −24 | −28 | −33 | −38 | −16 | −20 | −23 | −26 | −30 |
RS (dBm) | −36 | −40 | −44 | −49 | −54 | −33 | −37 | −40 | −44 | −47 |
OSNR(dB) | 74 | 69 | 64 | 59 | 54 | 89 | 84 | 79 | 74 | 69 |
log(BER) | −24 | −16 | −12 | −4 | 1 | −29 | −24 | −17 | −11 | −4 |
Q-Factor | 11.5 | 9.5 | 8.5 | 3.5 | 0 | 16.5 | 12.5 | 10.5 | 8.5 | 3.5 |
Transmission Channel | Wavelength (nm) | G (dB) | NF (dB) | Pi (dB) | OSNRi (dB) | Po (dB) | OSNRo (dB) |
---|---|---|---|---|---|---|---|
Hybrid TWDM-WDM-OCDMA PON | 1596 (DN) | −2.5 | 2.5 | 7 | 110 | 5.5 | 107 |
1527.2 (UP) | −2 | 2 | 7 | 110 | 5.5 | 108 | |
1575 (DN) | −3 | 2.5 | 7.5 | 110 | 5 | 107 | |
1260 (UP) | −3.5 | 2 | 7.5 | 108 | 6 | 107 | |
VLC system | Red (DN) | −3 | 2.5 | 3 | 103 | 2 | 101 |
Green (DN) | −2.5 | 2.5 | 7.5 | 110 | 7 | 106 | |
Blue (DN) | −3.5 | 2.5 | 3 | 99 | −2 | 92 | |
Red (UP) | −2.5 | 2 | 5.5 | 111 | 4 | 107 | |
Green (UP) | −2.5 | 2 | 5.5 | 108 | 5 | 105 | |
Blue (UP) | −2.5 | 2 | 2.5 | 102 | 2 | 100 | |
FSO | 1550 (DN) | −1.5 | 3 | 3.5 | 98 | −1 | 93 |
1550 (UP) | −1.5 | 2 | 4 | 110 | 3 | 106 |
Ref. | Code | Connected Devices | Code Weight | Length of Code | Cross-Correlation |
---|---|---|---|---|---|
[52] | Dynamic cyclic shift (DCS) | 30 | 4 | 30 | <1 |
[11] | Modified quadratic congruence (MQC) | 68 | 4 | 12 | 1 |
[53] | Modified double weight (MDW) | 9 | 16 | 30 | 1 |
[23] | Flexible cross-correlation (FCC) | 30 | 4 | 10 | 1 |
[27] | Hadamard | 30 | 16 | 32 | ≤1 |
[54] | Zero cross-correlation (ZCC) | 48 | 4 | 20 | 0 |
[55] | Enhanced double weight (EDW) | 10 | 4 | 30 | <1 |
Proposed system | MNZCC | 290 | 1 | 3 | 0 |
Ref. | Highest Data Rate (Gbps) | Maximum Fiber Length (km) | Maximum FSO Range (km) | Maximum VLC Range (m) | System Complexity Level |
---|---|---|---|---|---|
[56] | 10/2.5 | 20 | not defined | not defined | Moderate |
[57] | 10/1.25 | not defined | 0.05 | not defined | Moderate |
[58] | 10/2.5 | 50 | not defined | 10 | High |
[16] | 0.0126 | not defined | 0.05 | 1 | High |
[59] | 10 | 20 | not defined | 4.5 | High |
Proposed system | 10/2.5 | 100 | 10 | 15 | Moderate to high |
Wavelength (nm) | G (dB) | NF (dB) | Pi (dB) | OSNRi (dB) | Po (dB) | OSNRo (dB) |
---|---|---|---|---|---|---|
1596 (DN) | −2.5 | 3 | 7 | 109 | 6 | 106 |
1527.2 (UP) | −2 | 2.5 | 7 | 109 | 6 | 106 |
1575 (DN) | −3 | 3 | 7.5 | 109 | 5.5 | 106 |
1260 (UP) | −3.5 | 2.5 | 8 | 110 | 6.5 | 107 |
1550 (DN) | −1.5 | 1.5 | 6 | 105 | 5 | 103 |
1550 (UP) | −1 | 1 | 6 | 105 | 5 | 103 |
Red (DN) | −3 | 3 | 3 | 98 | −5 | 91 |
Green (DN) | −2.5 | 3 | 5 | 103 | −3 | 101 |
Blue (DN) | −2 | 2.5 | 4.5 | 112 | 3 | 106 |
Red (UP) | −3 | 3 | 6 | 101 | 2.5 | 100 |
Green (UP) | −3 | 2.5 | 4.5 | 108 | 3 | 105 |
Blue (UP) | −2 | 2 | 5 | 110 | 3.5 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, V.; Kumari, M.; Al-Khafaji, H.M.R.; Aljunid, S.A. Modeling of Satellite-to-Underwater Integrated FSO-PON System Using NOMA-VLC. Symmetry 2023, 15, 739. https://doi.org/10.3390/sym15030739
Arya V, Kumari M, Al-Khafaji HMR, Aljunid SA. Modeling of Satellite-to-Underwater Integrated FSO-PON System Using NOMA-VLC. Symmetry. 2023; 15(3):739. https://doi.org/10.3390/sym15030739
Chicago/Turabian StyleArya, Vivek, Meet Kumari, Hamza Mohammed Ridha Al-Khafaji, and Syed Alwee Aljunid. 2023. "Modeling of Satellite-to-Underwater Integrated FSO-PON System Using NOMA-VLC" Symmetry 15, no. 3: 739. https://doi.org/10.3390/sym15030739