Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach
Abstract
:1. Introduction
2. Problem Formulation
3. The Approximate Solution and the Neural Network Modeling
4. The Optimization Problem
5. The Cuckoo Search Algorithm
Hybrid Cuckoo Search
6. Procedure
- First, we define a neural network series solution which approximates the given THNF model.
- In the series solution we have random weights to be determined.
- To obtain a better approximate solution, we need to find the best set of weights.
- We define a fitness function as the mean squared error to convert the given system with the boundary conditions to an optimization problem, so that we obtain the best set of weights.
- To tackle the fitness function, we apply the HCS-ANN.
7. Results and Discussion
Validation of Results
8. Conclusions
- The impact of the cylinder-shaped nanoparticles play a key role in the heat transfer enhancements.
- The blade-shaped nanoparticles are opposing the heat transfer, while the gradient of the velocity (f) and the fluid motion (g) in the boundary layer increases with increasing values.
- The radiation parameter enhances the thermal profile with increasing values. A similar trend may be observed for the cylinder-shaped nanoparticles .
- The radiation parameter enhances the thermal profile.
- The implemented technique’s (HCS-ANN) efficiency has been proved through graphs and tables.
- The results of the proposed problem are validated through statistical graphs, such as regression analysis.
- The validation of the results show that HCS-ANN is the best for the solution of nonlinear problems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tagawa, T. Symmetry in Fluid Flow. Symmetry 2023, 15, 653. [Google Scholar] [CrossRef]
- Ishtiaq, B.; Zidan, A.M.; Nadeem, S.; Alaoui, M.K. Scrutinization of MHD stagnation point flow in hybrid nanofluid based on the extended version of Yamada-Ota and Xue models. Ain Shams Eng. J. 2023, 14, 101905. [Google Scholar] [CrossRef]
- Akhter, R.; Ali, M.M.; Alim, M. Entropy generation due to hydromagnetic buoyancy-driven hybrid-nanofluid flow in partially heated porous cavity containing heat conductive obstacle. Alex. Eng. J. 2023, 62, 17–45. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.; Patel, H.E. Heat transfer in nanofluids—A review. Heat Transf. Eng. 2006, 27, 3–19. [Google Scholar] [CrossRef]
- Choi, S.U. Nanofluids: From vision to reality through research. J. Heat Transfer. 2009, 131, 033106. [Google Scholar] [CrossRef]
- Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 2008, 29, 432–460. [Google Scholar] [CrossRef]
- Wong, K.V.; De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng. 2010, 2, 519659. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.R.; Ali, H.M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Solar Energy 2019, 183, 173–203. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Jamil, M.M.; Japar, W.M.A.A.; Adamu, I.M. A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. [Google Scholar] [CrossRef]
- Moldoveanu, G.M.; Huminic, G.; Minea, A.A.; Huminic, A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 2018, 127, 450–457. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Sahoo, R.R. Experimental study on the viscosity of hybrid nanofluid and development of a new correlation. Heat Mass Transf. 2020, 56, 3023–3033. [Google Scholar] [CrossRef]
- Sahoo, R.R. Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid. J. Therm. Anal. Calorim. 2021, 146, 827–839. [Google Scholar] [CrossRef]
- Xuan, Z.; Zhai, Y.; Ma, M.; Li, Y.; Wang, H. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. J. Mol. Liq. 2021, 323, 114889. [Google Scholar] [CrossRef]
- Mousavi, S.; Esmaeilzadeh, F.; Wang, X. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid: Experimental investigation. J. Therm. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Adun, H.; Mukhtar, M.; Adedeji, M.; Agwa, T.; Ibrahim, K.H.; Bamisile, O.; Dagbasi, M. Synthesis and application of ternary nanofluid for photovoltaic-thermal system: Comparative analysis of energy and exergy performance with single and hybrid nanofluids. Energies 2021, 14, 4434. [Google Scholar] [CrossRef]
- Kashyap, S.; Sarkar, J.; Kumar, A. Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids. Energy 2021, 225, 120199. [Google Scholar] [CrossRef]
- Manjunatha, S.; Puneeth, V.; Gireesha, B.; Chamkha, A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J. Appl. Comput. Mech. 2022, 8, 1279–1286. [Google Scholar]
- Nazir, U.; Sohail, M.; Hafeez, M.B.; Krawczuk, M. Significant production of thermal energy in partially ionized hyperbolic tangent material based on ternary hybrid nanomaterials. Energies 2021, 14, 6911. [Google Scholar] [CrossRef]
- Ahmed, W.; Kazi, S.N.; Chowdhury, Z.Z.; Johan, M.R.B.; Mehmood, S.; Soudagar, M.E.M.; Mujtaba, M.; Gul, M.; Ahmad, M.S. Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO+Al2O3+TiO2/DW based ternary hybrid nanofluids in a square flow conduit. Renew. Sustain. Energy Rev. 2021, 145, 111025. [Google Scholar] [CrossRef]
- Sahoo, R.R. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020, 370, 19–28. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Alsaedi, A. On three-dimensional flow and heat transfer over a non-linearly stretching sheet: Analytical and numerical solutions. PLoS ONE 2014, 9, e107287. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, R.; Das, U.J.; Ceruti, A.; Piancastelli, L.; Frizziero, L.; Zanuccoli, G.; Daidzic, N.; Rocchi, I.; Casano, G.; Piva, S.; et al. Visco-elastic effects on the three dimensional hydrodynamic flow past a vertical porous plate. Int. Inf. Eng. Technol. Assoc. 2013, 31, 1–8. [Google Scholar]
- Samanpour, H.; Ahmadi, N.; Jabbary, A. Effects of applying brand-new designs on the performance of PEM fuel cell and water flooding phenomena. Iran. J. Chem. Chem. Eng. 2022, 41, 618–635. [Google Scholar]
- Zhang, S.; Pei, Y.; Zhao, Z.; Guan, C.; Wu, G. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2023, 630, 453–464. [Google Scholar] [CrossRef]
- Shoaib, M.; Naz, S.; Nisar, K.S.; Raja, M.A.Z.; Aslam, S.; Ahmad, I. MHD casson nanofluid in darcy-forchheimer porous medium in the presence of heat source and arrhenious activation energy: Applications of neural networks. Int. J. Model. Simul. 2023, 43, 438–461. [Google Scholar] [CrossRef]
- Hasnain, J.; Abid, N. Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet. Numer. Heat Transf. Part A Appl. 2023, 83, 1365–1376. [Google Scholar] [CrossRef]
- Abid, N.; Ramzan, M.; Chung, J.D.; Kadry, S.; Chu, Y.M. Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux. Sci. Rep. 2020, 10, 19300. [Google Scholar] [CrossRef]
- Chen, K.Z.; Leung, Y.; Leung, K.S.; Gao, X.B. A neural network for solving nonlinear programming problems. Neural Comput. Appl. 2002, 11, 103–111. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Dillon, J.D.; O’Malley, M.J. A Lagrangian augmented Hopfield network for mixed integer non-linear programming problems. Neurocomputing 2002, 42, 323–330. [Google Scholar] [CrossRef]
- Dua, V. A mixed-integer programming approach for optimal configuration of artificial neural networks. Chem. Eng. Res. Des. 2010, 88, 55–60. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
Property | Ternary Hybrid Nanofluid |
---|---|
Density | , |
Heat capacity | |
, | |
Dynamic viscosity | , |
, | |
, | |
, | |
Blade-shaped nanoparticles , | |
Cylindrical nanoparticles , | |
Platelet-shaped nanoparticles |
Base Fluid/Nanoparticles | Shape | |||
---|---|---|---|---|
Water | 997.1 | 4179 | 0.613 | - |
2270 | 730 | 1.4013 | Blade | |
8933 | 385 | 401 | Platelet | |
5060 | 397.746 | 34.5 | Cylinder |
Error | Error | Error | ||||
---|---|---|---|---|---|---|
0 | 0.999997 | 1.000194 | 0.999962 | 3.52 × 10 | 2.49 × 10 | 1.37 × 10 |
0.5 | 0.64857 | 0.641643 | 0.639839 | 4.28 × 10 | 8.64 × 10 | 1.45 × 10 |
1 | 0.420625 | 0.411592 | 0.409277 | 2.59 × 10 | 3.49 × 10 | 3.24 × 10 |
1.5 | 0.272804 | 0.264031 | 2.62 × 10 | 1.15 × 10 | 2.52 × 10 | 1.41 × 10 |
2 | 0.176854 | 0.169352 | 0.167258 | 1.69 × 10 | 2.37 × 10 | 8.01 × 10 |
2.5 | 0.114714 | 0.108549 | 0.106688 | 6.15 × 10 | 4.05 × 10 | 3.73 × 10 |
3 | 0.074399 | 0.069509 | 0.067887 | 1.85 × 10 | 5.32 × 10 | 8.44 × 10 |
3.5 | 0.048098 | 0.04448 | 0.043128 | 8.22 × 10 | 1.42 × 10 | 5.69 × 10 |
4 | 0.030924 | 0.028459 | 0.027344 | 1.98 × 10 | 5.93 × 10 | 1.08 × 10 |
4.5 | 0.019761 | 0.018205 | 0.017213 | 1.05 × 10 | 3.85 × 10 | 8.36 × 10 |
5 | 0.012541 | 0.011623 | 0.010611 | 1.04 × 10 | 5.77 × 10 | 1.82 × 10 |
5.5 | 0.007884 | 0.007369 | 0.006217 | 5.75 × 10 | 1.59 × 10 | 2.03 × 10 |
6 | 0.004884 | 0.004592 | 0.003229 | 3.82 × 10 | 2.26 × 10 | 1.64 × 10 |
6.5 | 0.002955 | 0.002753 | 0.001159 | 3.63 × 10 | 2.37 × 10 | 1.09 × 10 |
7 | 0.001722 | 0.001514 | −0.00029 | 3.98 × 10 | 2.06 × 10 | 6.23 × 10 |
7.5 | 0.000943 | 0.000665 | −0.00132 | 4.18 × 10 | 1.56 × 10 | 3.15 × 10 |
8 | 0.000459 | 7.33 × 10 | −0.00205 | 3.99 × 10 | 1.06 × 10 | 1.39 × 10 |
Error | Error | Error | ||||
---|---|---|---|---|---|---|
0 | 0.999869 | 0.999942126 | 1.000046539 | 8.48 × 10 | 2.49 × 10 | 1.35 × 10 |
0.5 | 0.657548 | 0.648361105 | 0.652267958 | 1.13 × 10 | 8.64 × 10 | 1.48 × 10 |
1 | 0.432323 | 0.420373492 | 0.425345515 | 2.49 × 10 | 3.49 × 10 | 2.13 × 10 |
1.5 | 0.284134 | 0.272460669 | 0.277227263 | 2.75 × 10 | 2.52 × 10 | 1.77 × 10 |
2 | 0.186657 | 0.176493933 | 0.180648726 | 3.35 × 10 | 2.37 × 10 | 1.26 × 10 |
2.5 | 0.122446 | 0.114370487 | 0.117500726 | 3.41 × 10 | 4.05 × 10 | 1.19 × 10 |
3 | 0.080115 | 0.074177006 | 0.076153604 | 3.80 × 10 | 5.32 × 10 | 7.03 × 10 |
3.5 | 0.052232 | 0.048075896 | 0.049165752 | 1.07 × 10 | 1.42 × 10 | 9.59 × 10 |
4 | 0.033899 | 0.031018745 | 0.031632304 | 1.91 × 10 | 5.93 × 10 | 1.02 × 10 |
4.5 | 0.021866 | 0.019809821 | 0.020281361 | 1.24 × 10 | 3.85 × 10 | 5.37 × 10 |
5 | 0.013974 | 0.0124322 | 0.012941831 | 3.30 × 10 | 5.77 × 10 | 1.54 × 10 |
5.5 | 0.00879 | 0.007598363 | 0.008187146 | 3.09 × 10 | 1.59 × 10 | 7.49 × 10 |
6 | 0.005373 | 0.004468614 | 0.005088242 | 2.66 × 10 | 2.26 × 10 | 2.54 × 10 |
6.5 | 0.003101 | 0.002481237 | 0.00304435 | 8.46 × 10 | 2.37 × 10 | 1.20 × 10 |
7 | 0.001572 | 0.001251771 | 0.001669306 | 1.49 × 10 | 2.06 × 10 | 2.33 × 10 |
7.5 | 0.000522 | 0.000513104 | 0.000716345 | 2.04 × 10 | 1.56 × 10 | 3.32 × 10 |
8 | −0.00022 | 0.0000790103 | 0.0000288704 | 2.45 × 10 | 1.06 × 10 | 4.05 × 10 |
Error | Error | Error | ||||
---|---|---|---|---|---|---|
0 | 1.000207 | 0.999984463 | 1.000160487 | 1.29 × 10 | 2.64 × 10 | 4.29 × 10 |
0.5 | 0.607373 | 0.622932087 | 0.64851126 | 3.48 × 10 | 2.10 × 10 | 4.20 × 10 |
1 | 0.36874 | 0.387983682 | 0.420428542 | 4.99 × 10 | 1.52 × 10 | 1.14 × 10 |
1.5 | 0.223817 | 0.241550879 | 0.272454235 | 1.84 × 10 | 1.71 × 10 | 2.35 × 10 |
2 | 0.135761 | 0.15030047 | 0.176513107 | 3.23 × 10 | 3.85 × 10 | 1.19 × 10 |
2.5 | 0.082288 | 0.093391042 | 0.114374775 | 1.90 × 10 | 1.01 × 10 | 2.76 × 10 |
3 | 0.04976 | 0.057843178 | 0.074069561 | 1.80 × 10 | 7.90 × 10 | 1.09 × 10 |
3.5 | 0.029948 | 0.035616546 | 0.047797612 | 3.69 × 10 | 9.41 × 10 | 2.48 × 10 |
4 | 0.017906 | 0.021730061 | 0.030568072 | 2.21 × 10 | 5.25 × 10 | 2.01 × 10 |
4.5 | 0.010611 | 0.013081778 | 0.019220147 | 3.26 × 10 | 1.44 × 10 | 8.06 × 10 |
5 | 0.006204 | 0.007723781 | 0.01174661 | 1.89 × 10 | 1.47 × 10 | 8.03 × 10 |
5.5 | 0.003546 | 0.004422034 | 0.006857646 | 7.20 × 10 | 7.26 × 10 | 7.79 × 10 |
6 | 0.001943 | 0.002390821 | 0.003711368 | 2.03 × 10 | 9.74 × 10 | 5.39 × 10 |
6.5 | 0.000975 | 0.001132019 | 0.001749424 | 4.13 × 10 | 3.89 × 10 | 1.15 × 10 |
7 | 0.000389 | 0.000335618 | 0.000596071 | 4.60 × 10 | 2.76 × 10 | 1.71 × 10 |
7.5 | 0.0000345 | −0.00018474 | −0.0000047669 | 5.75 × 10 | 3.78 × 10 | 2.12 × 10 |
8 | −0.00018 | −0.00053577 | −0.0002295 | 5.78 × 10 | 2.41 × 10 | 2.35 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Waseem; Khan, M.I.; Awwad, F.A.; Ismail, E.A.A. Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach. Symmetry 2023, 15, 1529. https://doi.org/10.3390/sym15081529
Ullah A, Waseem, Khan MI, Awwad FA, Ismail EAA. Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach. Symmetry. 2023; 15(8):1529. https://doi.org/10.3390/sym15081529
Chicago/Turabian StyleUllah, Asad, Waseem, Muhammad Imran Khan, Fuad A. Awwad, and Emad A. A. Ismail. 2023. "Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach" Symmetry 15, no. 8: 1529. https://doi.org/10.3390/sym15081529
APA StyleUllah, A., Waseem, Khan, M. I., Awwad, F. A., & Ismail, E. A. A. (2023). Thermal Enhancement in the Ternary Hybrid Nanofluid (SiO2+Cu+MoS2/H2O) Symmetric Flow Past a Nonlinear Stretching Surface: A Hybrid Cuckoo Search-Based Artificial Neural Network Approach. Symmetry, 15(8), 1529. https://doi.org/10.3390/sym15081529