A Conflict Evidence Fusion Method Based on Bray–Curtis Dissimilarity and the Belief Entropy
Abstract
:1. Introduction
2. Preliminaries
2.1. The Frame of Discernment
2.2. Basic Probability Assignment
2.3. D-S Theory Synthesis Rules
2.4. Belief Function and Plausibility Function
3. Materials and Methods
3.1. Improved Pignistic Probability Function
3.2. Evidence Similarity Based on the Bray–Curtis Dissimilarity
3.3. Evidence Support Based on Cosine of the Included Angle
3.4. Evidence Uncertainty Based on Entropy
3.5. Evidence Fusion Based on the Dempster Rule
Algorithm 1 Conflict Evidence Fusion Method Based on the Bray–Curtis Dissimilarity and the Belief Entropy |
Input: Initial BPAs: Output: Fusion Result:
|
4. Experiments
4.1. An Example of Single-Subset Focal Element Data
- (1)
- Improved Pignistic probability function
- (2)
- The Bray–Curtis dissimilarity matrix is derived from Equations (9) and (10) as follows:
- (3)
- Equations (13) and (14) are applied to obtain the cosine distance matrix of the included angle:
- (4)
- Applying Equations (17)–(19), the entropy of each evidence is calculated as follows:
- (5)
- According to Equations (21)–(22), the normalized evidence weighted correction coefficient is calculated as follows:
- (6)
- Evidence fusion is executed according to Equation (24), and the final fusion results are presented in Table 2.
- (7)
4.2. An Example of Multi-Subset Focal Element Data
- (1)
- Improved Pignistic probability function
- (2)
- The Bray–Curtis dissimilarity matrix, as derived from Equations (9) and (10), is represented by the following:
- (3)
- The cosine distance matrix of the included angle, obtained from Equations (13) and (14), is given by the following:
- (4)
- Applying Equations (17)–(19), the entropy of each available evidence is determined as follows:
- (5)
- According to Equations (21)–(22), the normalized evidence weighted correction coefficient is obtained as follows:
- (6)
- Convergence of Evidence Based on D-S Theory
- (7)
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dempster, A.P. Upper and Lower Probabilities Induce by a Multiplicand Mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Glenn, S. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 42. [Google Scholar]
- Basir, O.; Yuan, X. Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Inf. Fusion 2007, 8, 379–386. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.; Li, Y.; Zhang, C.; Jia, C. Tension prediction for the scraper chain through multi-sensor information fusion based on improved Dempster-Shafer evidence theory. Alex. Eng. J. 2023, 64, 41–54. [Google Scholar] [CrossRef]
- Belmahdi, F.; Lazri, M.; Ouallouche, F.; Labadi, K.; Absi, R.; Ameur, S. Application of Dempster-Shafer theory for optimization of precipitation classification and estimation results from remote sensing data using machine learning. Remote Sens. Appl. Soc. Environ. 2023, 29, 100906. [Google Scholar] [CrossRef]
- Hamid, R.A.; Albahri, A.S.; Albahri, O.S.; Zaidan, A.A. Dempster–Shafer theory for classification and hybridised models of multi-criteria decision analysis for prioritisation: A telemedicine framework for patients with heart diseases. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 4333–4367. [Google Scholar] [CrossRef]
- Chen, L.; Diao, L.; Sang, J. Weighted evidence combination rule based on evidence distance and uncertainty measure: An application in fault diagnosis. Math. Probl. Eng. 2018, 2018, 5858272. [Google Scholar] [CrossRef]
- Ghosh, N.; Saha, S.; Paul, R. iDCR: Improved Dempster Combination Rule for multisensor fault diagnosis. Eng. Appl. Artif. Intell. 2021, 104, 104369. [Google Scholar] [CrossRef]
- Fei, L.; Wang, Y. An optimization model for rescuer assignments under an uncertain environment by using Dempster–Shafer theory. Knowl.-Based Syst. 2022, 255, 109680. [Google Scholar] [CrossRef]
- Fei, L.; Feng, Y. Modeling interactive multiattribute decision-making via probabilistic linguistic term set extended by Dempster–Shafer theory. Int. J. Fuzzy Syst. 2021, 23, 599–613. [Google Scholar] [CrossRef]
- Jia, R.S.; Liu, C.; Sun, H.M.; Yan, X.H. A situation assessment method for rock burst based on multi-agent information fusion. Comput. Electr. Eng. 2015, 45, 22–32. [Google Scholar] [CrossRef]
- Liu, Z.G.; Pan, Q.; Dezert, J.; Martin, A. Adaptive imputation of missing values for incomplete pattern classification. Pattern Recognit. 2016, 52, 85–95. [Google Scholar] [CrossRef]
- Zadeh, L.A. Review of a mathematical theory of evidence. AI Mag. 1984, 5, 81. [Google Scholar]
- Cuzzolin, F. A geometric approach to the theory of evidence. IEEE Trans. Syst. ManCybern. Part C (Appl. Rev.) 2008, 38, 522–534. [Google Scholar] [CrossRef]
- Yager, R.R. On the Dempster-Shafer framework and new combination rules. Inf. Sci. 1987, 41, 93–137. [Google Scholar] [CrossRef]
- Florea, M.C.; Jousselme, A.L.; Bossé, É.; Grenier, D. Robust combination rules for evidence theory. Inf. Fusion 2009, 10, 183–197. [Google Scholar] [CrossRef]
- Su, X.; Li, L.; Qian, H.; Mahadevan, S.; Deng, Y. A new rule to combine dependent bodies of evidence. Soft Comput. 2019, 23, 9793–9799. [Google Scholar] [CrossRef]
- Murphy, C.K. Combining belief functions when evidence conflicts. Decis. Support Syst. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- Yong, D.; Shi, W.; Zhu, Z.; Liu, Q. Combining belief functions based on distance of evidence. Decis. Support Syst. 2004, 38, 489–493. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, C.; Ma, C.; Dou, Z.; Ma, X. A new combination method for multisensor conflict information. J. Supercomput. 2016, 72, 2874–2890. [Google Scholar] [CrossRef]
- Shi, X.; Liang, F.; Qin, P.; Yu, L.; He, G. A Novel Evidence Combination Method Based on Improved Pignistic Probability. Entropy 2023, 25, 948. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, G.; Zhou, Y.; Huang, Y.; Zhou, D. Conflicting evidence fusion using a correlation coefficient-based approach in complex network. Chaos Solitons Fractals 2023, 176, 114087. [Google Scholar] [CrossRef]
- Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 2019, 46, 23–32. [Google Scholar] [CrossRef]
- Zhao, K.; Sun, R.; Li, L.; Hou, M.; Yuan, G.; Sun, R. An improved evidence fusion algorithm in multi-sensor systems. Appl. Intell. 2021, 51, 7614–7624. [Google Scholar] [CrossRef]
- Li, J.; Xie, B.; Jin, Y.; Hu, Z.; Zhou, L. Weighted conflict evidence combination method based on Hellinger distance and the belief entropy. IEEE Access 2020, 8, 225507–225521. [Google Scholar] [CrossRef]
- Wang, X.; Di, P.; Yin, D. Conflict evidence fusion method based on lance distance and credibility entropy. Syst. Eng. Electron. 2021, 44, 592–602. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, D.; Cao, Z. Conflict evidence fusion method for single subset focus elements. J. Beijing Univ. Aeronaut. Astronaut. 2023, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, J.; Tang, X. An improved DS evidence theory algorithm for conflict evidence. J. Beijing Univ. Aeronaut. Astronaut. 2020, 46, 616–623. [Google Scholar]
- Pal, N.R.; Bezdek, J.C.; Hemasinha, R. Uncertainty measures for evidential reasoning I: A review. Int. J. Approx. Reason. 1992, 7, 165–183. [Google Scholar] [CrossRef]
- George, T.; Pal, N.R. Quantification of conflict in Dempster-Shafer framework: A new approach. Int. J. Gen. Syst. 1996, 24, 407–423. [Google Scholar] [CrossRef]
- Lefevre, E.; Colot, O.; Vannoorenberghe, P.; De Brucq, D. A generic framework for resolving the conflict in the combination of belief structures. In Proceedings of the Third International Conference on Information Fusion, Paris, France, 10–13 July 2000; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Pan, W.; Wang, Y.; Yang, H. Design of Pignistic probability conversion algorithm. Comput. Eng. 2005, 31, 20–22+25. [Google Scholar]
- Dubois, D.; Prade, H. Representation and combination of uncertainty with belief functions and possibility measures. Comput. Intell. 1988, 4, 244–264. [Google Scholar] [CrossRef]
- Smets, P.; Kennes, R. The transferable belief model. Class. Work. Dempster-Shafer Theory Belief Funct. 2008, 2019, 693–736. [Google Scholar]
- Sudano, J.J. Pignistic probability transforms for mixes of low-and high-probability events. arXiv 2015, arXiv:1505.07751. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Ricotta, C.; Podani, J. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecol. Complex. 2017, 31, 201–205. [Google Scholar] [CrossRef]
- Ricotta, C.; Pavoine, S. A new parametric measure of functional dissimilarity: Bridging the gap between the Bray-Curtis dissimilarity and the Euclidean distance. Ecol. Model. 2022, 466, 109880. [Google Scholar] [CrossRef]
- Wen, C.; Wang, Y.; Xu, X. Fuzzy information fusion algorithm of fault diagnosis based on similarity measure of evidence. In Advances in Neural Networks-ISNN 2008, Proceedings of the 5th International Symposium on Neural Networks, ISNN 2008, Beijing, China, 24–28 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5, pp. 506–515. [Google Scholar]
- Chen, B.C.; Tao, X.; Yang, M.R.; Yu, C.; Pan, W.M.; Leung, V.C. A saliency map fusion method based on weighted DS evidence theory. IEEE Access 2018, 6, 27346–27355. [Google Scholar] [CrossRef]
- Khan, M.N.; Anwar, S. Paradox elimination in Dempster–Shafer combination rule with novel entropy function: Application in decision-level multi-sensor fusion. Sensors 2019, 19, 4810. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Deng, Y. Deng Entropy: A generalized Shannon Entropy to Measure Uncertainty. Available online: https://fs.unm.edu/DengEntropyAGeneralized.pdf (accessed on 31 January 2015).
- Yan, H.; Deng, Y. An improved belief entropy in evidence theory. IEEE Access 2020, 8, 57505–57516. [Google Scholar] [CrossRef]
- Yuan, K.; Xiao, F.; Fei, L.; Kang, B.; Deng, Y. Conflict management based on belief function entropy in sensor fusion. SpringerPlus 2016, 5, 638. [Google Scholar] [CrossRef] [PubMed]
The Converted Mass Functions | |||
---|---|---|---|
0.9 | 0 | 0.1 | |
0 | 0.01 | 0.99 | |
0.5 | 0.2 | 0.3 | |
0.98 | 0.01 | 0.01 | |
0.9 | 0.05 | 0.05 |
Fusion Results | |||
---|---|---|---|
0.9751 | 0.0053 | 0.0196 | |
0.9968 | 0.0004 | 0.0029 | |
0.9996 | 0.0000 | 0.0004 | |
0.9999 | 0.0000 | 0.0001 |
Fusion Approach | BPA | First Fusion | Second Fusion | Third Fusion | Fourth Fusion |
---|---|---|---|---|---|
Dempster rule | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | ||
1.0000 | 1.0000 | 1.0000 | 1.0000 | ||
Murphy’s method | 0.4054 | 0.5055 | 0.8930 | 0.9834 | |
0.0001 | 0.0000 | 0.0001 | 0.0000 | ||
0.5946 | 0.4945 | 0.1069 | 0.0166 | ||
Deng’s method | 0.4055 | 0.5737 | 0.8033 | 0.8585 | |
0.0045 | 0.0866 | 0.0439 | 0.0379 | ||
0.5900 | 0.3397 | 0.1528 | 0.1036 | ||
Wang’s method | 0.8931 | 0.9669 | 0.9898 | 0.9968 | |
0.0179 | 0.0027 | 0.0004 | 0.0001 | ||
0.0890 | 0.3040 | 0.0098 | 0.0031 | ||
LI’s method | 0.9189 | 0.9797 | 0.9949 | 0.9987 | |
0.0180 | 0.0027 | 0.0004 | 0.0000 | ||
0.0630 | 0.0176 | 0.0047 | 0.0012 | ||
Zhao’s method | 0.4571 | 0.7178 | 0.9792 | 0.9991 | |
0.0000 | 0.0046 | 0.0001 | 0.0000 | ||
0.5429 | 0.2775 | 0.0207 | 0.0009 | ||
Chen’s method | 0.4054 | 0.7211 | 0.9910 | 0.9996 | |
0.0001 | 0.0040 | 0.0001 | 0.0000 | ||
0.5946 | 0.2749 | 0.0089 | 0.0003 | ||
Xiao’s method | 0.2790 | 0.5763 | 0.9397 | 0.9963 | |
0.0001 | 0.0065 | 0.0004 | 0.0000 | ||
0.7210 | 0.4173 | 0.0599 | 0.0037 | ||
Our method | 0.9751 | 0.9968 | 0.9996 | 0.9999 | |
0.0053 | 0.0004 | 0.0000 | 0.0000 | ||
0.0196 | 0.0029 | 0.0004 | 0.0001 |
The Converted Mass Functions | |||
---|---|---|---|
0.4100 | 0.2900 | 0.3000 | |
0.0000 | 0.9000 | 0.1000 | |
0.8211 | 0.0882 | 0.0908 | |
0.7834 | 0.1259 | 0.0908 | |
0.8077 | 0.1231 | 0.0692 |
Fusion Results | |||
---|---|---|---|
m1″⨁m2″ | 0.9547 | 0.0288 | 0.0165 |
m1″⨁m2″⨁m3″ | 0.9926 | 0.0052 | 0.0023 |
m1″⨁m2″⨁m3″⨁m4″ | 0.9988 | 0.0009 | 0.0003 |
m1″⨁m2″⨁m3″⨁m4″⨁m5″ | 0.9998 | 0.0002 | 0.0000 |
Fusion Approach | BPA | First Fusion | Second Fusion | Third Fusion | Fourth Fusion |
---|---|---|---|---|---|
Dempster rule | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.8969 | 0.6350 | 0.3320 | 0.0000 | ||
0.1031 | 0.3650 | 0.6680 | 1.0000 | ||
Murphy’s method | 0.0964 | 0.4939 | 0.8362 | 0.9613 | |
0.8119 | 0.4180 | 0.1147 | 0.0147 | ||
0.0917 | 0.0792 | 0.0410 | 0.0166 | ||
0.0000 | 0.0090 | 0.0081 | 0.0032 | ||
Deng’s method | 0.0000 | 0.6019 | 0.9329 | 0.9802 | |
0.8969 | 0.2908 | 0.0225 | 0.0009 | ||
0.1031 | 0.0991 | 0.0354 | 0.0154 | ||
0.0000 | 0.0082 | 0.0092 | 0.0035 | ||
Wang’s method | 0.7283 | 0.8679 | 0.9393 | 0.9728 | |
0.0972 | 0.0423 | 0.0167 | 0.0063 | ||
0.0180 | 0.0034 | 0.0006 | 0.0000 | ||
0.1565 | 0.0865 | 0.0433 | 0.0208 | ||
LI’s method | 0.7505 | 0.8714 | 0.9346 | 0.9669 | |
0.0504 | 0.0152 | 0.0042 | 0.0011 | ||
0.0072 | 0.0008 | 0.0000 | 0.0000 | ||
0.1918 | 0.1126 | 0.0610 | 0.0319 | ||
Zhao’s method | 0.1046 | 0.6945 | 0.9355 | 0.9817 | |
0.7989 | 0.1902 | 0.0163 | 0.0000 | ||
0.0965 | 0.1062 | 0.0409 | 0.0147 | ||
0.0000 | 0.0091 | 0.0073 | 0.0036 | ||
Chen’s method | 0.0964 | 0.8923 | 0.9788 | 0.9916 | |
0.8119 | 0.0293 | 0.0010 | 0.0001 | ||
0.0917 | 0.0455 | 0.0102 | 0.0026 | ||
0.0000 | 0.0329 | 0.0173 | 0.0057 | ||
Xiao’s method | 0.1420 | 0.6391 | 0.9400 | 0.9816 | |
0.7412 | 0.2462 | 0.0165 | 0.0006 | ||
0.1168 | 0.1072 | 0.0341 | 0.0141 | ||
0.0000 | 0.0075 | 0.0093 | 0.0037 | ||
Our method | 0.9547 | 0.9926 | 0.9988 | 0.9998 | |
0.0288 | 0.0052 | 0.0009 | 0.0002 | ||
0.0165 | 0.0023 | 0.0003 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zou, T.; Fu, H. A Conflict Evidence Fusion Method Based on Bray–Curtis Dissimilarity and the Belief Entropy. Symmetry 2024, 16, 75. https://doi.org/10.3390/sym16010075
Liu Y, Zou T, Fu H. A Conflict Evidence Fusion Method Based on Bray–Curtis Dissimilarity and the Belief Entropy. Symmetry. 2024; 16(1):75. https://doi.org/10.3390/sym16010075
Chicago/Turabian StyleLiu, Yue, Tianji Zou, and Hongyong Fu. 2024. "A Conflict Evidence Fusion Method Based on Bray–Curtis Dissimilarity and the Belief Entropy" Symmetry 16, no. 1: 75. https://doi.org/10.3390/sym16010075
APA StyleLiu, Y., Zou, T., & Fu, H. (2024). A Conflict Evidence Fusion Method Based on Bray–Curtis Dissimilarity and the Belief Entropy. Symmetry, 16(1), 75. https://doi.org/10.3390/sym16010075