Approximate N5LO Higgs Boson Decay Width Γ(H→γγ)
Abstract
:1. Introduction
2. The N4LO-Level Prediction under the PMC and the Higher-Order Contribution Using a Bayesian Analysis
2.1. Basic Numerical Results and Discussions
2.2. The Fiducial Cross Section of
3. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.A.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Baer, H.; Barklow, T.; Fujii, K.; Gao, Y.; Hoang, A.; Kanemura, S.; List, J.; Logan, H.E.; Nomerotski, A.; Perelstein, M.; et al. The International Linear Collider Technical Design Report—Volume 2: Physics. arXiv 2013, arXiv:1306.6352. [Google Scholar]
- Guimaraes da Costa, J.B.; Gao, Y.; Jin, S.; Qian, J.; Tully, C.G.; Young, C.; Wang, L.T.; Ruan, M.; Zhu, H.; Dong, M. CEPC Conceptual Design Report: Volume 2—Physics & Detector. arXiv 2018, arXiv:1811.10545. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C 2019, 79, 474. [Google Scholar] [CrossRef]
- Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Yu, Q.; Wu, X.G.; Wang, S.Q.; Huang, X.D.; Shen, J.M.; Zeng, J. Properties of the decay H→γγ using the approximate corrections and the principle of maximum conformality. Chin. Phys. C 2019, 43, 093102. [Google Scholar] [CrossRef]
- Ellis, J.R.; Gaillard, M.K.; Nanopoulos, D.V. A Phenomenological Profile of the Higgs Boson. Nucl. Phys. B 1976, 106, 292. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Voloshin, M.B.; Zakharov, V.I. Low-Energy Theorems for Higgs Boson Couplings to Photons. Sov. J. Nucl. Phys. 1979, 30, 711. [Google Scholar]
- Zheng, H.Q.; Wu, D.D. First order QCD corrections to the decay of the Higgs boson into two photons. Phys. Rev. D 1990, 42, 3760. [Google Scholar] [CrossRef]
- Dawson, S.; Kauffman, R.P. QCD corrections to H→γγ. Phys. Rev. D 1993, 47, 1264. [Google Scholar] [CrossRef]
- Djouadi, A.; Spira, M.; van der Bij, J.J.; Zerwas, P.M. QCD corrections to gamma gamma decays of Higgs particles in the intermediate mass range. Phys. Lett. B 1991, 257, 187. [Google Scholar] [CrossRef]
- Djouadi, A.; Spira, M.; Zerwas, P.M. Two photon decay widths of Higgs particles. Phys. Lett. B 1993, 311, 255. [Google Scholar] [CrossRef]
- Melnikov, K.; Yakovlev, O.I. Higgs → two photon decay: QCD radiative correction. Phys. Lett. B 1993, 312, 179. [Google Scholar] [CrossRef]
- Inoue, M.; Najima, R.; Oka, T.; Saito, J. QCD corrections to two photon decay of the Higgs boson and its reverse process. Mod. Phys. Lett. A 1994, 9, 1189. [Google Scholar] [CrossRef]
- Spira, M.; Djouadi, A.; Graudenz, D.; Zerwas, P.M. Higgs boson production at the LHC. Nucl. Phys. B 1995, 453, 17. [Google Scholar] [CrossRef]
- Fleischer, J.; Tarasov, O.V.; Tarasov, V.O. Analytical result for the two loop QCD correction to the decay H→2γ. Phys. Lett. B 2004, 584, 294. [Google Scholar] [CrossRef]
- Harlander, R.; Kant, P. Higgs production and decay: Analytic results at next-to-leading order QCD. J. High Energy Phys. 2005, 12, 015. [Google Scholar] [CrossRef]
- Anastasiou, C.; Buehler, S.; Herzog, F.; Lazopoulos, A. Inclusive Higgs boson cross-section for the LHC at 8 TeV. J. High Energy Phys. 2012, 2012, 4. [Google Scholar] [CrossRef]
- Maierhöfer, P.; Marquard, P. Complete three-loop QCD corrections to the decay H→γγ. Phys. Lett. B 2013, 721, 131. [Google Scholar] [CrossRef]
- Sturm, C. Higher order QCD results for the fermionic contributions of the Higgs-boson decay into two photons and the decoupling function for the renormalized fine-structure constant. Eur. Phys. J. C 2014, 74, 2978. [Google Scholar] [CrossRef]
- Marquard, P.; Smirnov, A.V.; Smirnov, V.A.; Steinhauser, M.; Wellmann, D. -on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group. Phys. Rev. D 2016, 94, 074025. [Google Scholar] [CrossRef]
- Davies, J.; Herren, F. Higgs boson decay into photons at four loops. Phys. Rev. D 2021, 104, 053010. [Google Scholar] [CrossRef]
- Actis, S.; Passarino, G.; Sturm, C.; Uccirati, S. NNLO Computational Techniques: The Cases H→γγ and H→gg. Nucl. Phys. B 2009, 811, 182. [Google Scholar] [CrossRef]
- Benedikt, M.; Mertens, V.; Cerutti, F.; Riegler, W.; Otto, T.; Tommasini, D.; Tavian, L.J.; Gutleber, J.; Zimmermann, F.; Mangano, M.; et al. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019, 228, 755. [Google Scholar]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343. [Google Scholar] [CrossRef]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346. [Google Scholar] [CrossRef]
- Caswell, W.E. Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order. Phys. Rev. Lett. 1974, 33, 244. [Google Scholar] [CrossRef]
- Jones, D.R.T. Two Loop Diagrams in Yang-Mills Theory. Nucl. Phys. B 1974, 75, 531. [Google Scholar] [CrossRef]
- Tarasov, O.V.; Vladimirov, A.A.; Zharkov, A.Y. The Gell-Mann-Low Function of QCD in the Three Loop Approximation. Phys. Lett. B 1980, 93, 429. [Google Scholar] [CrossRef]
- Larin, S.A.; Vermaseren, J.A.M. The Three loop QCD Beta function and anomalous dimensions. Phys. Lett. B 1993, 303, 334. [Google Scholar] [CrossRef]
- van Ritbergen, T.; Vermaseren, J.A.M.; Larin, S.A. The Four loop beta function in quantum chromodynamics. Phys. Lett. B 1997, 400, 379. [Google Scholar] [CrossRef]
- Chetyrkin, K.G. Four-loop renormalization of QCD: Full set of renormalization constants and anomalous dimensions. Nucl. Phys. B 2005, 710, 499. [Google Scholar] [CrossRef]
- Czakon, M. The Four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 2005, 710, 485. [Google Scholar] [CrossRef]
- Baikov, P.A.; Chetyrkin, K.G.; Kühn, J.H. Five-Loop Running of the QCD running coupling constant. Phys. Rev. Lett. 2017, 118, 082002. [Google Scholar] [CrossRef]
- Herzog, F.; Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.; Vogt, A. The five-loop beta function of Yang-Mills theory with fermions. J. High Energy Phys. 2017, 2017, 90. [Google Scholar] [CrossRef]
- Luthe, T.; Maier, A.; Marquard, P.; Schröder, Y. The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge. J. High Energy Phys. 2017, 2017, 166. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wu, X.G.; Zheng, X.C.; Shen, J.M.; Zhang, Q.L. The Higgs boson inclusive decay channels H→b and H→gg up to four-loop level. Eur. Phys. J. C 2014, 74, 2825. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: The QCD Coupling Constant at Four Loops. Phys. Rev. D 2012, 85, 034038. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Giustino, L.D. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality. Phys. Rev. D 2012, 86, 085026. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Wu, X.G. Application of the Principle of Maximum Conformality to Top-Pair Production. Phys. Rev. D 2012, 86, 014021. [Google Scholar] [CrossRef]
- Mojaza, M.; Brodsky, S.J.; Wu, X.G. Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD. Phys. Rev. Lett. 2013, 110, 192001. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Mojaza, M.; Wu, X.G. Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations. Phys. Rev. D 2014, 89, 014027. [Google Scholar] [CrossRef]
- Wu, X.G.; Brodsky, S.J.; Mojaza, M. The Renormalization Scale-Setting Problem in QCD. Prog. Part. Nucl. Phys. 2013, 72, 44. [Google Scholar] [CrossRef]
- Wu, X.G.; Ma, Y.; Wang, S.Q.; Fu, H.B.; Ma, H.H.; Brodsky, S.J.; Mojaza, M. Renormalization Group Invariance and Optimal QCD Renormalization Scale-Setting. Rept. Prog. Phys. 2015, 78, 126201. [Google Scholar] [CrossRef]
- Wu, X.G.; Shen, J.M.; Du, B.L.; Huang, X.D.; Wang, S.Q.; Brodsky, S.J. The QCD Renormalization Group Equation and the Elimination of Fixed-Order Scheme-and-Scale Ambiguities Using the Principle of Maximum Conformality. Prog. Part. Nucl. Phys. 2019, 108, 103706. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Low, F.E. Quantum electrodynamics at small distances. Phys. Rev. 1954, 95, 1300. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Lepage, G.P.; Mackenzie, P.B. On the Elimination of Scale Ambiguities in Perturbative Quantum Chromodynamics. Phys. Rev. D 1983, 28, 228. [Google Scholar] [CrossRef]
- Shen, J.M.; Wu, X.G.; Du, B.L.; Brodsky, S.J. Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting. Phys. Rev. D 2017, 95, 094006. [Google Scholar] [CrossRef]
- Stueckelberg de Breidenbach, E.C.G.; Petermann, A. Normalization of constants in the quanta theory. Helv. Phys. Acta 1953, 26, 499. [Google Scholar]
- Peterman, A. Renormalization Group and the Deep Structure of the Proton. Phys. Rept. 1979, 53, 157. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wu, X.G.; Zheng, X.C.; Chen, G.; Shen, J.M. An analysis of H→γγ up to three-loop QCD corrections. J. Phys. G 2014, 41, 075010. [Google Scholar] [CrossRef]
- Cacciari, M.; Houdeau, N. Meaningful characterization of perturbative theoretical uncertainties. J. High Energy Phys. 2011, 2011, 39. [Google Scholar] [CrossRef]
- Bagnaschi, E.; Cacciari, M.; Guffanti, A.; Jenniches, L. An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations. J. High Energy Phys. 2015, 2015, 133. [Google Scholar] [CrossRef]
- Bonvini, M. Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders. Eur. Phys. J. C 2020, 80, 989. [Google Scholar] [CrossRef]
- Duhr, C.; Huss, A.; Mazeliauskas, A.; Szafron, R. An analysis of Bayesian estimates for missing higher orders in perturbative calculations. J. High Energy Phys. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Shen, J.M.; Zhou, Z.J.; Wang, S.Q.; Yan, J.; Wu, Z.F.; Wu, X.G.; Brodsky, S.J. Extending the Predictive Power of Perturbative QCD Using the Principle of Maximum Conformality and Bayesian Analysis. Eur. Phys. J. C 2023, 83, 326. [Google Scholar] [CrossRef]
- Basdevant, J.L. The Pade approximation and its physical applications. Fortsch. Phys. 1972, 20, 283. [Google Scholar] [CrossRef]
- Samuel, M.A.; Li, G.; Steinfelds, E. Estimating perturbative coefficients in quantum field theory using Pade approximants. 2. Phys. Lett. B 1994, 323, 188. [Google Scholar] [CrossRef]
- Samuel, M.A.; Ellis, J.R.; Karliner, M. Comparison of the Pade approximation method to perturbative QCD calculations. Phys. Rev. Lett. 1995, 74, 4380. [Google Scholar] [CrossRef]
- Du, B.L.; Wu, X.G.; Shen, J.M.; Brodsky, S.J. Extending the Predictive Power of Perturbative QCD. Eur. Phys. J. C 2019, 79, 182. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of the Higgs Boson Production cross Section at 7, 8 and 13 TeV Center-of-Mass Energies in the H→γγ Channel with the ATLAS Detector. ATLAS-CONF-2015-060. Available online: http://cds.cern.ch/record/2114826 (accessed on 1 September 2022).
- de Florian, D.; Fontes, D.; Quevillon, J.; Schumacher, M.; Llanes-Estrada, F.J.; Gritsan, A.V.; Vryonidou, E.; Signer, A.; de Castro, M.P.; Pagani, D.; et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. arXiv 2016, arXiv:1610.07922. [Google Scholar]
- Heinemeyer, S.; Mariotti, C.; Passarino, G.; Tanaka, R.; Andersen, J.R.; Artoisenet, P.; Bagnaschi, E.A.; Banfi, A.; Becher, T.; Bernlochner, F.U.; et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. arXiv 2013, arXiv:1307.1347. [Google Scholar]
- ATLAS. Measurements of Higgs Boson Properties in the Diphoton Decay Channel with 36.1 fb−1 pp Collision Data at the Center-of-Mass Energy of 13 TeV with the ATLAS Detector. ATLAS-CONF-2017-045. Available online: http://cds.cern.ch/record/2273852 (accessed on 1 September 2022).
- ATLAS. Combination of Searches for Heavy Resonances Using 139 fb−1 of proton–proton Collision Data at = 13 TeV with the ATLAS Detector. ATLAS-CONF-2022-028. Available online: http://cds.cern.ch/record/2809967 (accessed on 1 September 2022).
- Alves, L.; Lucio, F. Fiducial and differential cross-section measurements in the di-photon channel using full Run2 dataset at ATLAS. In Proceedings of the 41st International Conference on High Energy Physics (ICHEP 2022), Bologna, Italy, 6–13 July 2022; p. 1051. [Google Scholar]
- CMS. Measurement of Differential Fiducial Cross Sections for Higgs Boson Production in the Diphoton Decay Channel in pp Collisions at = 13 TeV. CMS-PAS-HIG-17-015. Available online: http://cds.cern.ch/record/2257530 (accessed on 1 September 2022).
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Ero, J.; et al. Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at = 8 TeV. Eur. Phys. J. C 2016, 76, 13. [Google Scholar] [CrossRef] [PubMed]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Escalante Del Valle, A.; Hussain, P.S.; Jeitler, M.; et al. Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at = 13 TeV. J. High Energy Phys. 2023, 2023, 091. [Google Scholar]
- Wang, S.Q.; Wu, X.G.; Brodsky, S.J.; Mojaza, M. Application of the Principle of Maximum Conformality to the Hadroproduction of the Higgs Boson at the LHC. Phys. Rev. D 2016, 94, 053003. [Google Scholar] [CrossRef]
CI | ||||
EC | − | |||
CI | ||||
EC | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.-F.; Yan, J.; Wu, Z.-F.; Wu, X.-G. Approximate N5LO Higgs Boson Decay Width Γ(H→γγ). Symmetry 2024, 16, 173. https://doi.org/10.3390/sym16020173
Luo Y-F, Yan J, Wu Z-F, Wu X-G. Approximate N5LO Higgs Boson Decay Width Γ(H→γγ). Symmetry. 2024; 16(2):173. https://doi.org/10.3390/sym16020173
Chicago/Turabian StyleLuo, Yu-Feng, Jiang Yan, Zhi-Fei Wu, and Xing-Gang Wu. 2024. "Approximate N5LO Higgs Boson Decay Width Γ(H→γγ)" Symmetry 16, no. 2: 173. https://doi.org/10.3390/sym16020173