Nanoframes as a Resilient Candidate for a Broader Spectra of Catalysis Challenges
Abstract
:1. Introduction
2. Synthetic Approaches
2.1. Face Selected Carving of Solid Nanocrystals
2.2. Edge Selected Deposition of Different Metals on Template
2.3. De-Alloying of Hollow Alloy Nanocrystals
2.4. Nanoframe-Directed Deposition
2.5. One-Pot Synthesis
Synthetic Approach Used | Metal | Morphology | References |
---|---|---|---|
Nanocrystal face selected carving | Pt-Cu-Co | Rhombic dodecahedron | [30] |
Pt-Ni-Sn | Rhombic dodecahedron | [53] | |
Au@Pd | cubical | [54] | |
Deposition of different metals on the template by preferential edge selection | Ru-Pd | Octahedron cuboctahedron | [55] |
Ir-Cu | Rhombic dodecahedron | [51] | |
Ag-Au-Pt | cube | [56] | |
Hollow nanocrystal’s dealloying | Ir-Cu-Au | Rhombic dodecahedron | [51] |
Pd-Au | Cube truncated octahedron | [57] | |
Pt-Au | Cube truncated octahedron | [57] | |
Template-assisted arrangement of nanoscale building blocks | Au | Triangle, tripod | [58] |
Directed deposition of nanoframe | Pt-Au@Au | Double-layered triangle, ring, hexagon | [48] |
Pt-Ni@MOF | Rhombic dodecahedron | [50] |
2.6. Thermal Reductions
2.7. Oxidative Etching
2.8. Galvanic Replacement Reaction
2.9. Kirkendall Effect
2.10. Photocatalytic Template Synthesis
2.11. Self-Assembly of Nanoparticles
2.12. Solvo-Thermal Synthesis
3. Different Metal Nano-Frames
3.1. Metal Nanoframe
3.2. Alloy Metal Nanoframe
3.3. Doped Metal Nanoframes
4. Applications
4.1. Electro Catalytic Performance
4.1.1. Methanol Oxidation Reaction (MOR)
4.1.2. Ethanol Oxidation Reaction (EOR)
4.1.3. Oxygen Reduction Reaction (ORR)
4.1.4. Hydrogen Evaluation Reaction (HER)
4.1.5. Formic Acid Oxidation Reaction (FAOR)
4.1.6. Overall Water Splitting
4.1.7. Glycerol Oxidation Reaction (GOR)
4.2. Biomedical Applications
4.2.1. Healing of Liver Injury
4.2.2. Detection of Tumor Cells
4.2.3. Synergistic Photo Thermal and Chemo Dynamic Therapy
4.3. Theranostic Application
4.4. Industrial Applications (Dye Removal)
4.4.1. Methyl Red
4.4.2. Methylene Blue
4.4.3. 4-Nitro Phenol
4.5. Electro Fenton Application: H2O2 Production in Acids
4.6. Electrical Batteries
4.6.1. Lithium-Ion Battery Anodes
4.6.2. Na-Ion Batteries
4.7. Energy Storage Devices
4.7.1. Lithium–Sulfur Li-S Cells
4.7.2. Supercapacitor Electrodes
4.8. Surface-Enhanced Resonance Spectroscopy (SERS)
4.9. Fuel Cell Electrolysis
4.10. Sensing of Gaseous Molecules
4.10.1. VOCs and CWA (Chemical Warfare Agent)
4.10.2. Hydrogen Sulfide (H2S) Detection
4.11. Reduction of CO2
4.11.1. Photocatalytic
4.11.2. Electro Catalytic
4.12. Hydrogen Enrichment and Molecular Sieving
4.13. Spectator of Co+2 Ions
4.14. Antibacterial Performance
4.15. Nano Probes for Bio Sensing
4.15.1. Human Chorionic Gonadotrophin (HCG)
4.15.2. Glucose in Human Tears
4.16. Photo and Thermal Driven Catalytic Activity of Nanofrmes
4.16.1. Photothermal Catalytic
4.16.2. Solar-Driven H2 Production
5. Conclusions
6. Future Directions
- The thickness of ridges should be controlled by tuning the breadth of the metal being deposited on the template surface, which in turn can be achieved by the adjustment of the relative amount of both.
- Until now, the production of NFs has been limited to a very small scale, i.e., milligrams. Attention should be given in future work to the enhancement of their production to meet industrial demands.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, K.Y.; Kim, M.; Noh, J.-S.; Choi, H.C.; Lee, W. Novel surfactant-free multi-branched gold stars characterized by inverse photocurrent. J. Mater. Chem. A 2013, 1, 13890–13895. [Google Scholar] [CrossRef]
- Liu, X.; Astruc, D. From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications in catalysis, sensing, and materials science. Adv. Mater. 2017, 29, 1605305. [Google Scholar] [CrossRef]
- Ridelman, Y.; Singh, G.; Popovitz-Biro, R.; Wolf, S.G.; Das, S.; Klajn, R. Metallic nanobowls by galvanic replacement reaction on heterodimeric nanoparticles. Small 2012, 8, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.; McCarty, E.; Holmes, J.D. Controlling alloy formation and optical properties by galvanic replacement of sub-20 nm silver nanoparticles in organic media. CrystEngComm 2015, 17, 6999–7005. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Fujime, Y.; Takahashi, C.N.; Nakanishi, S.; Itoh, T. Formation mechanism of plasmonic silver nanohexagonal particles made by galvanic displacement reaction. RSC Adv. 2016, 6, 31454–31461. [Google Scholar] [CrossRef]
- Hangarter, C.M.; Lee, Y.-I.; Hernandez, S.C.; Choa, Y.-h.; Myung, N.V. Nanopeapods by galvanic displacement reaction. Angew. Chem. Int. Ed. 2010, 49, 7081–7085. [Google Scholar] [CrossRef]
- Parisi, J.; Su, L.; Lei, Y. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip 2013, 13, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J.; Vajtai, R.; Ajayan, P.M. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 2011, 115, 9403–9409. [Google Scholar] [CrossRef]
- Liu, J.; Uprety, B.; Gyawali, S.; Woolley, A.T.; Myung, N.V.; Harb, J.N. Fabrication of DNA-templated Te and Bi2Te3 nanowires by galvanic displacement. Langmuir 2013, 29, 11176–11184. [Google Scholar] [CrossRef]
- Mohl, M.; Kumar, A.; Reddy, A.L.M.; Kukovecz, A.; Konya, Z.; Kiricsi, I.; Vajtai, R.; Ajayan, P.M. Synthesis of catalytic porous metallic nanorods by galvanic exchange reaction. J. Phys. Chem. C 2010, 114, 389–393. [Google Scholar] [CrossRef]
- Tan, Y.-N.; Yang, J.; Lee, J.Y.; Wang, D.I.C. Mechanistic Study on the Bis(p-sulfonatophenyl)phenylphosphine Synthesis of Monometallic Pt Hollow Nanoboxes Using Ag*−Pt Core−Shell Nanocubes as Sacrificial Templates. J. Phys. Chem. C 2007, 111, 14084–14090. [Google Scholar] [CrossRef]
- He, P.; Yu, X.Y.; Lou, X.W. Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Ed. 2017, 56, 3897–3900. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shang, H.; Xu, H.; Du, Y. Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water splitting. J. Mater. Chem. A 2021, 9, 857–874. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, Z.; Cheng, X.; Guo, S.; Tang, L.; Yang, H.; Wu, H.; Pan, F.; Zhang, P.; Cao, X. Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. J. Membr. Sci. 2018, 545, 19–28. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, S.; Yang, G.; Wang, X.; Lu, T.; Pan, L. Synthesis of bimetallic NixCo1−xP hollow nanocages from metal-organic frameworks for high performance hybrid supercapacitors. Electrochim. Acta 2018, 285, 192–201. [Google Scholar] [CrossRef]
- Huang, M.; Mi, K.; Zhang, J.; Liu, H.; Yu, T.; Yuan, A.; Kong, Q.; Xiong, S. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 2017, 5, 266–274. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Li, J.-j.; Zhao, J.-w. Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.S.; da Silva, A.G.; Macedo, A.; Farini, B.W.; Alves, R.d.S.; Camargo, P.H. Probing the catalytic activity of bimetallic versus trimetallic nanoshells. J. Mater. Sci. 2015, 50, 5620–5629. [Google Scholar] [CrossRef]
- Kisukuri, C.M.; Palmeira, D.J.; Rodrigues, T.S.; Camargo, P.H.; Andrade, L.H. Bimetallic Nanoshells as Platforms for Metallo-and Biometallo-Catalytic Applications. ChemCatChem 2016, 8, 171–179. [Google Scholar] [CrossRef]
- Godinez-Salomon, F.; Albiter, L.; Mendoza-Cruz, R.; Rhodes, C.P. Bimetallic two-dimensional nanoframes: High activity acidic bifunctional oxygen reduction and evolution electrocatalysts. ACS Appl. Energy Mater. 2020, 3, 2404–2421. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.; Qin, D. Ag-Enriched Ag-Pd Bimetallic Nanoframes and Their Catalytic Properties. ChemNanoMat 2016, 2, 494–499. [Google Scholar] [CrossRef]
- Cheng, D.; Wang, W.; Cao, D.; Huang, S. Simulating Synthesis of Metal Nanorods, Nanoplates, and Nanoframes by Self-Assembly of Nanoparticle Building Blocks. J. Phys. Chem. C 2009, 113, 3986–3997. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Liu, C.; Chen, S.; Sang, W.; Wang, C.; Zeng, J. Rational design of metal nanoframes for catalysis and plasmonics. Small 2015, 11, 2593–2605. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lu, N.; Xie, Z.; Wang, J.; Kim, M.J.; Xia, Y. Synthesis of Pd-Rh core–frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. 2012, 51, 10266–10270. [Google Scholar] [CrossRef] [PubMed]
- Nosheen, F.; Zhang, Z.-c.; Zhuang, J.; Wang, X. One-pot fabrication of single-crystalline octahedral Pt–Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 2013, 5, 3660–3663. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.-J.; Chen, H.-Y.; Wen, G.-L.; Feng, J.-J.; Zhang, Q.-L.; Wang, A.-J. One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction. J. Colloid Interface Sci. 2019, 539, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yin, H.; Bai, X.; Yang, Z. Ru doping induced lattice distortion of Cu nanoparticles for boosting electrochemical nonenzymatic hydrogen peroxide sensing. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131311. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, S.; Kim, J.-M.; Choi, S.; Kim, J.; Park, S.-J.; Park, D.; Nam, J.-M.; Park, S. Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones. Nano Lett. 2020, 20, 4362–4369. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Shen, P.K. Concave Platinum–Copper Octopod Nanoframes Bounded with Multiple High-Index Facets for Efficient Electrooxidation Catalysis. ACS Nano 2017, 11, 11946–11953. [Google Scholar] [CrossRef]
- Kwon, T.; Jun, M.; Kim, H.Y.; Oh, A.; Park, J.; Baik, H.; Joo, S.H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Z.-F.; Sun, Q.; Zeng, Y.-P. Template-assisted synthesis of single-crystalline Mn3O4 nanoframes and hollow octahedra. Solid State Sci. 2012, 14, 1462–1466. [Google Scholar] [CrossRef]
- Okazaki, K.-i.; Sakuma, J.; Yasui, J.-i.; Kuwabata, S.; Hirahara, K.; Tanaka, N.; Torimoto, T. Fabrication of nanoframe structures by site-selective assembly of gold nanoparticles on silver cubes in an ionic liquid. Chem. Lett. 2011, 40, 84–86. [Google Scholar] [CrossRef]
- Negondeni, J.; Ngwenya, T. Synthesizing Pt-Ni/C Nanoframes electrocatalyst using the solvothermal and in-house developed method for PEM fuel cells. Suid-Afr. Tydskr. Natuurwetenskap Tegnol./S. Afr. J. Sci. Technol. 2021, 40, 262–266. [Google Scholar] [CrossRef]
- Chen, X.-L.; Wen, G.-L.; Huang, H.; Wang, A.-J.; Wang, Z.-G.; Feng, J.-J. Uric acid supported one-pot solvothermal fabrication of rhombic-like Pt35Cu65 hollow nanocages for highly efficient and stable electrocatalysis. J. Colloid Interface Sci. 2019, 540, 486–494. [Google Scholar] [CrossRef]
- Snyder, J.; Fujita, T.; Chen, M.; Erlebacher, J. Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907. [Google Scholar] [CrossRef]
- Snyder, J.; McCue, I.; Livi, K.; Erlebacher, J. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 8633–8645. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Choi, S.-I.; Xia, X.; Xia, Y. Catalysis on faceted noble-metal nanocrystals: Both shape and size matter. Curr. Opin. Chem. Eng. 2013, 2, 142–150. [Google Scholar] [CrossRef]
- Yang, T.-H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2020, 121, 796–833. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Zhang, Z.; Yang, G.; He, T.; Yin, Y.; Jin, M. Synthesis of Pd nanoframes by excavating solid nanocrystals for enhanced catalytic properties. ACS Nano 2017, 11, 163–170. [Google Scholar] [CrossRef]
- Han, L.; Liu, H.; Cui, P.; Peng, Z.; Zhang, S.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Sci. Rep. 2014, 4, 6414. [Google Scholar] [CrossRef] [PubMed]
- Oh, A.; Baik, H.; Choi, D.S.; Cheon, J.Y.; Kim, B.; Kim, H.; Kwon, S.J.; Joo, S.H.; Jung, Y.; Lee, K. Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@ Ni core–shell nanocrystal. ACS Nano 2015, 9, 2856–2867. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.H.; Shi, Y.; Janssen, A.; Xia, Y. Surface capping agents and their roles in shape-Controlled synthesis of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 2020, 59, 15378–15401. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhang, W.; Guo, K.; Liu, X.; Liu, J.; Liang, X.; Wang, X.; Gao, D.; Gan, L.; Zhu, Y. Fine-Tuning Intrinsic Strain in Penta-Twinned Pt–Cu–Mn Nanoframes Boosts Oxygen Reduction Catalysis. Adv. Funct. Mater. 2020, 30, 1910107. [Google Scholar] [CrossRef]
- Park, J.; Wang, H.; Vara, M.; Xia, Y. Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. ChemSusChem 2016, 9, 2855–2861. [Google Scholar] [CrossRef]
- Zhang, L.; Roling, L.T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J.A.; Xie, Z. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Au, L.; McLellan, J.; Li, Z.Y.; Marquez, M.; Xia, Y. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, J.; Choi, S.; Park, D.; Park, S. Two-dimensional nanoframes with dual rims. Nat. Commun. 2019, 10, 5789. [Google Scholar] [CrossRef]
- Gilroy, K.D.; Yang, X.; Xie, S.; Zhao, M.; Qin, D.; Xia, Y. Shape-controlled synthesis of colloidal metal nanocrystals by replicating the surface atomic structure on the seed. Adv. Mater. 2018, 30, 1706312. [Google Scholar] [CrossRef]
- Li, Z.; Yu, R.; Huang, J.; Shi, Y.; Zhang, D.; Zhong, X.; Wang, D.; Wu, Y.; Li, Y. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248. [Google Scholar] [CrossRef]
- Pei, J.; Mao, J.; Liang, X.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Ir–Cu nanoframes: One-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chem. Commun. 2016, 52, 3793–3796. [Google Scholar] [CrossRef]
- Kull, S.; Heymann, L.; Hungria, A.B.; Klinke, C. Synthesis of Single-Crystalline Lead Sulfide Nanoframes and Nanorings. Chem. Mater. 2019, 31, 5646–5654. [Google Scholar] [CrossRef]
- Gruzeł, G.; Arabasz, S.; Pawlyta, M.; Parlinska-Wojtan, M. Conversion of bimetallic PtNi 3 nanopolyhedra to ternary PtNiSn nanoframes by galvanic replacement reaction. Nanoscale 2019, 11, 5355–5364. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhan, Q.; Wang, Z.; Chen, Q.; Tong, J.; Fang, D.; Xia, L.; Jin, M. Construction of light-harvesting system for enhanced catalytic performance of Pd nanoframes toward Suzuki coupling reaction. J. Mater. Chem. A 2017, 5, 10150–10153. [Google Scholar] [CrossRef]
- Chen, G.; Desinan, S.; Nechache, R.; Rosei, R.; Rosei, F.; Ma, D. Bifunctional catalytic/magnetic Ni@Ru core–shell nanoparticles. Chem. Commun. 2011, 47, 6308–6310. [Google Scholar] [CrossRef]
- Ahn, J.; Qin, D. Fabrication of Nanoscale Cage Cubes by Drilling Orthogonal, Intersected Holes through All Six Side Faces of Ag Nanocubes. Chem. Mater. 2019, 31, 9179–9187. [Google Scholar] [CrossRef]
- Hajfathalian, M.; Gilroy, K.D.; Golze, S.D.; Yaghoubzade, A.; Menumerov, E.; Hughes, R.A.; Neretina, S. A Wulff in a cage: The confinement of substrate-based structures in plasmonic nanoshells, nanocages, and nanoframes using galvanic replacement. ACS Nano 2016, 10, 6354–6362. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Yang, S.; Gao, J.; Wang, R. Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami. Chem. A Eur. J. 2017, 23, 14177–14181. [Google Scholar] [CrossRef]
- Wang, S.; Yang, G.; Yang, S. Pt-frame@ Ni quasi core–shell concave octahedral PtNi3 bimetallic nanocrystals for electrocatalytic methanol oxidation and hydrogen evolution. J. Phys. Chem. C 2015, 119, 27938–27945. [Google Scholar] [CrossRef]
- Godínez-Salomón, F.; Albiter, L.; Alia, S.M.; Pivovar, B.S.; Camacho-Forero, L.E.; Balbuena, P.B.; Mendoza-Cruz, R.; Arellano-Jimenez, M.J.; Rhodes, C.P. Self-Supported Hydrous Iridium–Nickel Oxide Two-Dimensional Nanoframes for High Activity Oxygen Evolution Electrocatalysts. ACS Catal. 2018, 8, 10498–10520. [Google Scholar] [CrossRef]
- Zhao, M.; Hood, Z.D.; Vara, M.; Gilroy, K.D.; Chi, M.; Xia, Y. Ruthenium nanoframes in the face-centered cubic phase: Facile synthesis and their enhanced catalytic performance. ACS Nano 2019, 13, 7241–7251. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Wang, X.; Rosen, A.; Beatrez, W.; Sztaberek, L.; Tan, H.; Zhang, L.; Koenigsmann, C.; Zhao, J. Composition-Dependent Oxygen Reduction Reaction Activity of Pt-Surfaced PtNi Dodecahedral Nanoframes. ACS Appl. Energy Mater. 2020, 3, 768–776. [Google Scholar] [CrossRef]
- Bai, X.; Geng, J.; Zhao, S.; Li, H.; Li, F. Tunable Hollow Pt@Ru Dodecahedra via Galvanic Replacement for Efficient Methanol Oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23046–23050. [Google Scholar] [CrossRef]
- Nosheen, F.; Anwar, T.; Siddique, A.; Hussain, N. Noble metal based alloy nanoframes: Syntheses and applications in fuel cells. Front. Chem. 2019, 7, 456. [Google Scholar] [CrossRef] [PubMed]
- González, E.; Arbiol, J.; Puntes, V.F. Carving at the Nanoscale: Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature. Science 2011, 334, 1377. [Google Scholar] [CrossRef]
- Shi, H.; Ouyang, S.; Peng, M.; Wang, T.; Wang, S. Photocatalytic template synthesis of Pt nanocages with enhanced electrocatalytic performance. ECS Electrochem. Lett. 2015, 4, H38. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Wang, A.-J.; Zhang, L.; Yuan, J.; Li, Z.; Feng, J.-J. Solvothermal synthesis of monodisperse PtCu dodecahedral nanoframes with enhanced catalytic activity and durability for hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5054–5061. [Google Scholar] [CrossRef]
- Huang, X.-Y.; You, L.-X.; Zhang, X.-F.; Feng, J.-J.; Zhang, L.; Wang, A.-J. L-proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim. Acta 2019, 299, 89–97. [Google Scholar] [CrossRef]
- Luo, S.; Tang, M.; Shen, P.K.; Ye, S. Atomic-Scale Preparation of Octopod Nanoframes with High-Index Facets as Highly Active and Stable Catalysts. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, S.; Xu, S.; Duan, Z.; Wang, Z.; Zhang, Y. Ag Nanoframes Deposited on Au Films Generate Optical Cavities for Surface-Enhanced Raman Scattering. ACS Appl. Nano Mater. 2020, 3, 5116–5122. [Google Scholar] [CrossRef]
- Godínez-Salomón, F.; Mendoza-Cruz, R.; Arellano-Jimenez, M.J.; Jose-Yacaman, M.; Rhodes, C.P. Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel–Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability. ACS Appl. Mater. Interfaces 2017, 9, 18660–18674. [Google Scholar] [CrossRef]
- Kao, C.-R.; Yeh, A.-H.; Chen, B.-H.; Lyu, L.-M.; Chuang, Y.-C.; Sneed, B.T.; Kuo, C.-H. Insights into Transformation of Icosahedral PdRu Nanocrystals into Lattice-Expanded Nanoframes with Strain Enhancement in Electrochemical Redox Reactions. Chem. Mater. 2022, 34, 2282–2291. [Google Scholar] [CrossRef]
- Ye, H.; Wang, Q.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M.J.; Liu, Y.; Sun, Y.; Xia, X. Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties. Nano Lett. 2016, 16, 2812–2817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pu, J.; Jiang, Y.; Shen, Z.; Li, J.; Liu, J.; Ma, H.; Niu, J.; Zhang, H. Low Interface Energies Tune the Electrochemical Reversibility of Tin Oxide Composite Nanoframes as Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2018, 10, 36892–36901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Gao, Z.; Ding, B.; An, P.; Zhang, X.; Sun, B.; Sun, B. Mesoporous Silica-Coated Silver Nanoframes as Drug-Delivery Vehicles for Chemo/Starvation/Metal Ion Multimodality Therapy. Langmuir 2020, 36, 6345–6351. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zheng, L.; Feng, W.; Guo, A.; Gao, X.; Long, Z.; Qiu, X. Copper Isolated Sites on N-Doped Carbon Nanoframes for Efficient Oxygen Reduction. ACS Sustain. Chem. Eng. 2020, 8, 14030–14038. [Google Scholar] [CrossRef]
- Oh, A.; Sa, Y.J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S.H.; Lee, K. Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Sa, Y.J.; Baik, H.; Kwon, T.; Joo, S.H.; Lee, K. Iridium-based multimetallic nanoframe@ nanoframe structure: An efficient and robust electrocatalyst toward oxygen evolution reaction. ACS Nano 2017, 11, 5500–5509. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, B.; He, Y.-C.; Wen, H.-R.; Fu, X.-Z.; Sun, R.; Wong, C.-P. NiCo2O4 nanoframes with a nanosheet surface as efficient electrocatalysts for the oxygen evolution reaction. Mater. Chem. Front. 2018, 2, 1155–1164. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Tian, Z.Q.; Shen, P.K. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. J. Mater. Chem. A 2019, 7, 18619–18625. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, B.; Cao, M.; Zhang, C.; Liu, X.; Zhang, Q.; Lyu, F.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265–272. [Google Scholar] [CrossRef]
- Ji, L.; Wang, J.; Teng, X.; Meyer, T.J.; Chen, Z. CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ACS Catal. 2020, 10, 412–419. [Google Scholar] [CrossRef]
- Lian, Y.; Sun, H.; Wang, X.; Qi, P.; Mu, Q.; Chen, Y.; Ye, J.; Zhao, X.; Deng, Z.; Peng, Y. Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 2019, 10, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Wei, Y.; Wu, P.; Xu, M.; Wang, T.; Wang, S.; Liang, Q.; Meyer, T.J.; Chen, Z. Heterointerface Engineering of Ni2P–Co2P Nanoframes for Efficient Water Splitting. Chem. Mater. 2021, 33, 9165–9173. [Google Scholar] [CrossRef]
- Wang, A.J.; Zhang, X.F.; Jiang, L.Y.; Zhang, L.; Feng, J.J. Bimetallic Alloyed PtCu Nanocubic Frames with Three-Dimensional Molecular Accessible Surfaces for Boosting Oxygen Reduction and Glycerol Oxidation Reactions. ChemCatChem 2018, 10, 3319–3326. [Google Scholar] [CrossRef]
- Chen, M.; Meng, Y.; Zhou, J.; Diao, G. Platinum nanoworms self-assemble on β-cyclodextrin polymer inclusion complexes functionalized reduced graphene oxide as enhanced catalyst for direct methanol fuel cells. J. Power Sources 2014, 265, 110–117. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Lin, H.Y.; Hou, Y.-T.; Yang, L.-C.; Sun, A.Y.; Liu, J.-Y.; Chang, C.-W.; Wan, D. Near-IR-Absorbing Gold Nanoframes with Enhanced Physiological Stability and Improved Biocompatibility for In Vivo Biomedical Applications. ACS Appl. Mater. Interfaces 2017, 9, 3873–3884. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, S.; Sun, S.; Hai, J.; Meng, G.; Wang, B. NIR II Light-Response Au Nanoframes: Amplification of a Pressure-and Temperature-Sensing Strategy for Portable Detection and Photothermal Therapy of Cancer Cells. Anal. Chem. 2021, 93, 14307–14316. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, P.; Afkhami, A.; Baradaran, B.; Halabian, R.; Madrakian, T.; Arduini, F.; Nguyen, T.A.; Bagheri, H. Well-orientation strategy for direct immobilization of antibodies: Development of the immunosensor using the boronic acid-modified magnetic graphene nanoribbons for ultrasensitive detection of lymphoma cancer cells. Anal. Chem. 2020, 92, 11405–11412. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-H.; Lin, H.-C.; Lai, C.-L.; Chen, P.-Y.; Lai, C.-H. Mannosyl electrochemical impedance cytosensor for label-free MDA-MB-231 cancer cell detection. Biosens. Bioelectron. 2018, 116, 100–107. [Google Scholar] [CrossRef]
- Baird, Z.; Pirro, V.; Ayrton, S.; Hollerbach, A.; Hanau, C.; Marfurt, K.; Foltz, M.; Cooks, R.G.; Pugia, M. Tumor cell detection by mass spectrometry using signal ion emission reactive release amplification. Anal. Chem. 2016, 88, 6971–6975. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; He, M.; Wang, H.; Hu, B. Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens. Bioelectron. 2016, 86, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Li, L.; Zhao, Y.; Wang, H.; Li, M. Near-Infrared II Plasmonic Au@Au–Ag Dot-in-Cubic Nanoframes for In Vivo Surface-Enhanced Raman Spectroscopic Detection and Photoacoustic Imaging. Adv. Funct. Mater. 2021, 31, 2103186. [Google Scholar] [CrossRef]
- Yu, T.; Dai, P.-P.; Xu, J.-J.; Chen, H.-Y. Highly sensitive colorimetric cancer cell detection based on dual signal amplification. ACS Appl. Mater. Interfaces 2016, 8, 4434–4441. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Gao, J.; Zhang, J.; Liu, D.; Gao, S.; Yan, Y.; Zhang, K.; Cai, K.; Yu, F.; Lin, M. Concave octahedral PtCu nanoframes mediated synergetic photothermal and chemodynamic tumor therapy. Chem. Eng. J. 2022, 442, 136172. [Google Scholar] [CrossRef]
- Ramanathan, S.; Archunan, G.; Sivakumar, M.; Selvan, S.T.; Fred, A.L.; Kumar, S.; Gulyás, B.; Padmanabhan, P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int. J. Nanomed. 2018, 13, 5561. [Google Scholar] [CrossRef] [PubMed]
- Karampelas, I.H.; Liu, K.; Alali, F.; Furlani, E.P. Plasmonic Nanoframes for Photothermal Energy Conversion. J. Phys. Chem. C 2016, 120, 7256–7264. [Google Scholar] [CrossRef]
- Vu, X.H.; Dien, N.D.; Pham, T.T.H.; Van Truong, N.; Ca, N.X.; Van Thu, V. Tunable LSPR of silver/gold bimetallic nanoframes and their SERS activity for methyl red detection. RSC Adv. 2021, 11, 14596–14606. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Cheng, S.; Zhou, P.; Li, H.; Liu, X.; Lin, M.; Xie, F.; Zhang, K.; Zhang, Y.; Zhang, C. Concave octopus-like PtCu nanoframe mediated photo-electro Fenton catalysis for fast organic dyestuff elimination. Nanoscale Adv. 2022, 4, 2782–2786. [Google Scholar] [CrossRef] [PubMed]
- Su, T.-y.; Lu, G.-P.; Sun, K.-K.; Zhang, M.; Cai, C. ZIF-derived metal/N-doped porous carbon nanocomposites: Efficient catalysts for organic transformations. Catal. Sci. Technol. 2022, 12, 2106–2121. [Google Scholar] [CrossRef]
- Ganjali, F.; Kashtiaray, A.; Zarei-Shokat, S.; Taheri-Ledari, R.; Maleki, A. Functionalized hybrid magnetic catalytic systems on micro-and nanoscale utilized in organic synthesis and degradation of dyes. Nanoscale Adv. 2022, 4, 1263–1307. [Google Scholar] [CrossRef]
- Mandal, B.; Panda, J.; Paul, P.K.; Sarkar, R.; Tudu, B. MnFe2O4 decorated reduced graphene oxide heterostructures: Nanophotocatalyst for methylene blue dye degradation. Vacuum 2020, 173, 109–150. [Google Scholar] [CrossRef]
- Chen, C.-H.; Liang, Y.-H.; Zhang, W.-D. ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J. Alloys Compd. 2010, 501, 168–172. [Google Scholar] [CrossRef]
- Dom, R.; Subasri, R.; Radha, K.; Borse, P.H. Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 2011, 151, 470–473. [Google Scholar] [CrossRef]
- Valero-Luna, C.; Palomares-Sanchéz, S.; Ruíz, F. Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today 2016, 266, 110–119. [Google Scholar] [CrossRef]
- Du, Y.; Zheng, Z.; Chang, W.; Liu, C.; Bai, Z.; Zhao, X.; Wang, C. Trace Amounts of Co3O4 Nano-Particles Modified TiO2 Nanorod Arrays for Boosted Photoelectrocatalytic Removal of Organic Pollutants in Water. Nanomaterials 2021, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Sun, Q.; Zhang, G.; Liu, F.; Liu, M.; Zheng, Y. Stepwise synthesis of polyhedral AuAgPd nanoframes for plasmon-enhanced catalytic reduction of 4-nitrophenol. Mater. Lett. 2022, 325, 132808. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Menazea, A.A. Polyvinyl Alcohol/Silver nanoparticles film prepared via pulsed laser ablation: An eco-friendly nano-catalyst for 4-nitrophenol degradation. J. Mol. Struct. 2020, 1212, 128125. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. Bimetallic PdAu Nanoframes for Electrochemical H2O2 Production in Acids. ACS Mater. Lett. 2021, 3, 996–1002. [Google Scholar] [CrossRef]
- Bai, J.; Wang, K.; Feng, J.; Xiong, S. ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties. ACS Appl. Mater. Interfaces 2015, 7, 22848–22857. [Google Scholar] [CrossRef]
- Fang, Y.; Guan, B.Y.; Luan, D.; Lou, X.W. Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem. 2019, 131, 7821–7825. [Google Scholar] [CrossRef]
- Fang, Y.; Luan, D.; Chen, Y.; Gao, S.; Lou, X.W. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew. Chem. Int. Ed. 2020, 59, 2644–2648. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Sheng, T.; Chen, J.; Lu, M.; Xu, Y.; Yuan, H.; Zhao, J.; Lu, J. Synthesizing Cu-doped CoSe2 nanoframe cubics for Na-ion batteries electrodes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127379. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Li, W.; Dirican, M.; Liu, Y.; Zhang, X. Interlayer design based on carbon materials for lithium–sulfur batteries: A review. J. Mater. Chem. A 2020, 8, 10709–10735. [Google Scholar] [CrossRef]
- Cui, J.; Li, Z.; Wang, G.; Guo, J.; Shao, M. Layered double hydroxides and their derivatives for lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 23738–23755. [Google Scholar] [CrossRef]
- Wang, R.; Tang, W.; Tang, M.; Wu, Q.; Li, J. ZIF-Derived Carbon Nanoframes as a Polysulfide Anchor and Conversion Mediator for High-Performance Lithium–Sulfur Cells. ACS Appl. Mater. Interfaces 2021, 13, 21544–21555. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Khalafallah, D.; Zhi, M.; Hong, Z. Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv. Compos. Hybrid Mater. 2022, 5, 2500–2514. [Google Scholar] [CrossRef]
- Shinde, N.M.; Xia, Q.X.; Yun, J.M.; Mane, R.S.; Kim, K.H. Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: Superfast room-temperature direct wet chemical growth. ACS Appl. Mater. Interfaces 2018, 10, 11037–11047. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Sharma, V.; Kshetri, T.; Kim, N.H.; Lee, J.H. Freestanding binder-free electrodes with nanodisk-needle-like MnCuCo-LTH and Mn1Fe2S2 porous microthorns for high-performance quasi-solid-state supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 12523–12537. [Google Scholar] [CrossRef]
- Fu, F.; Wang, H.; Yang, D.; Qiu, X.; Li, Z.; Qin, Y. Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors. J. Colloid Interface Sci. 2022, 617, 694–703. [Google Scholar] [CrossRef]
- Yan, M.; Yao, Y.; Wen, J.; Long, L.; Kong, M.; Zhang, G.; Liao, X.; Yin, G.; Huang, Z. Construction of a hierarchical NiCo2S4@PPy core–shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 24525–24535. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, T.; Liu, K.; Han, L.; Yin, Y.; Gao, C. Gold Nanoframes by Nonepitaxial Growth of Au on AgI Nanocrystals for Surface-Enhanced Raman Spectroscopy. Nano Lett. 2015, 15, 4448–4454. [Google Scholar] [CrossRef]
- Go, S.; Yoo, S.; Son, J.; Lee, S.; Lee, J.; Lee, S.; Kim, J.; Park, M.; Park, W.; Kim, J.-M.; et al. Ring-in-a-Triangle Nanoframes: Integrating with Intra- and Interhotspots for Highly Amplified Near-Field Focusing. Nano Lett. 2022, 22, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, M.; Gao, M.; Jin, J.; van Spronsen, M.A.; Salmeron, M.B.; Yang, P. High-Performance Pt–Co Nanoframes for Fuel-Cell Electrocatalysis. Nano Lett. 2020, 20, 1974–1979. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J.; Yoo, S.; Choi, S.; Park, D.; Park, S. Quantitative Surface-Enhanced Raman Spectroscopy Analysis through 3D Superlattice Arrays of Au Nanoframes with Attomolar Detection. Anal. Chem. 2020, 92, 1972–1977. [Google Scholar] [CrossRef]
- Luo, N.; Chen, Y.; Zhang, D.; Guo, M.; Xue, Z.; Wang, X.; Cheng, Z.; Xu, J. High-Sensitive MEMS Hydrogen Sulfide Sensor made from PdRh Bimetal Hollow Nanoframe Decorated Metal Oxides and Sensitization Mechanism Study. ACS Appl. Mater. Interfaces 2020, 12, 56203–56215. [Google Scholar] [CrossRef]
- Zhou, Q.; Yan, S.; Zhang, L. Fe-doped MOF-derived N-rich porous carbon nanoframe for H2S cataluminescence sensing. Luminescence 2022, 37, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Li, L.; Song, H.; Su, Y.; Lv, Y. Porous boron nitride: A novel metal-free cataluminescence material for high performance H2S sensing. Sens. Actuators B Chem. 2021, 332, 129512. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, L.; Sun, M.; Liu, R.; Yu, L.; Lv, Y. Metal-free cataluminescence gas sensor for hydrogen sulfide based on its catalytic oxidation on silicon carbide nanocages. Anal. Chem. 2017, 89, 13666–13672. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, H.; Xing, Z.; Zhang, X. A highly selective chemiluminescent H2S sensor. Sens. Actuators B Chem. 2004, 102, 155–161. [Google Scholar] [CrossRef]
- Pu, S.; Pan, Y.; Zhang, L.; Lv, Y. Recent advances in chemiluminescence and cataluminescence for the detection of volatile sulfur compounds. Appl. Spectrosc. Rev. 2021, 58, 401–427. [Google Scholar] [CrossRef]
- Hu, Y.; Li, L.; Zhang, L.; Lv, Y. Dielectric barrier discharge plasma-assisted fabrication of g-C3N4-Mn3O4 composite for high-performance cataluminescence H2S gas sensor. Sens. Actuators B Chem. 2017, 239, 1177–1184. [Google Scholar] [CrossRef]
- Zeng, B.; Zhang, L.; Wan, X.; Song, H.; Lv, Y. Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens. Actuators B Chem. 2015, 211, 370–376. [Google Scholar] [CrossRef]
- Liang, S.; Zhong, X.; Zhong, Z.; Han, B.; Chen, W.; Song, K.; Deng, H.; Lin, Z. Biomimetic inspired porphyrin-based nanoframes for highly efficient photocatalytic CO2 reduction. Chem. Eng. J. 2021, 411, 128414. [Google Scholar] [CrossRef]
- Chen, X.; Ma, D.-D.; Chen, B.; Zhang, K.; Zou, R.; Wu, X.-T.; Zhu, Q.-L. Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B Environ. 2020, 267, 118720. [Google Scholar] [CrossRef]
- Lee, H.; Sung, H.K.; Park, C.; Kim, Y. Bimetallic Au/Ag nanoframes as spectator for Co2+ ion. J. Ind. Eng. Chem. 2017, 48, 235–241. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Ni, B.; Wang, K.; He, T.; Wu, Y.; Wang, X. Mesoporous ZrO2 Nanoframes for Biomass Upgrading. ACS Appl. Mater. Interfaces 2017, 9, 26897–26906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tan, J.; Yang, X.; Ma, Y.; Zou, H.; Wang, Y.; Zhang, P.; Zheng, Y. Size-Tunable Yolk–Shell Gold–Silver Nanostructures for Photothermal Treatment of Multidrug-Resistant Bacteria. ACS Appl. Nano Mater. 2022, 5, 10818–10828. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wu, Y.; Mehrjou, B.; Tang, K.; Wang, G.; Chu, P.K. Versatile Phenol-Incorporated Nanoframes for In Situ Antibacterial Activity Based on Oxidative and Physical Damages. Adv. Funct. Mater. 2022, 32, 2110635. [Google Scholar] [CrossRef]
- Hilal, H.; Zhao, Q.; Kim, J.; Lee, S.; Haddadnezhad, M.; Yoo, S.; Lee, S.; Park, W.; Park, W.; Lee, J. Three-dimensional nanoframes with dual rims as nanoprobes for biosensing. Nat. Commun. 2022, 13, 4813. [Google Scholar] [CrossRef]
- Liu, X.-L.; Wang, J.-H.; Liang, S.; Yang, D.-J.; Nan, F.; Ding, S.-J.; Zhou, L.; Hao, Z.-H.; Wang, Q.-Q. Tuning plasmon resonance of gold nanostars for enhancements of nonlinear optical response and Raman scattering. J. Phys. Chem. C 2014, 118, 9659–9664. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Chang, T.-F.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Electrocatalytic activity enhancement of Au NPs-TiO2 electrode via a facile redistribution process towards the non-enzymatic glucose sensors. Sens. Actuators B Chem. 2020, 319, 128279. [Google Scholar] [CrossRef]
- Madriz, L.; Tatá, J.; Carvajal, D.; Núñez, O.; Scharifker, B.R.; Mostany, J.; Borrás, C.; Cabrerizo, F.M.; Vargas, R. Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renew. Energy 2020, 152, 974–983. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Zou, X.; Shi, X.-L.; Liu, W.-D.; Feng, L.; Suo, G.; Hou, X.; Ye, X.; Zhang, L.; et al. Flexible Carbon-Fiber/Semimetal Bi Nanosheet Arrays as Separable and Recyclable Plasmonic Photocatalysts and Photoelectrocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 24845–24854. [Google Scholar] [CrossRef]
- Wang, C.; Nie, X.-G.; Shi, Y.; Zhou, Y.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles. ACS Nano 2017, 11, 5897–5905. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Ma, H.; Wang, C.; Zhang, M.; Wang, X.; Li, S.; Chen, M. Alloyed AuPt nanoframes loaded on h-BN nanosheets as an ingenious ultrasensitive near-infrared photoelectrochemical biosensor for accurate monitoring glucose in human tears. Biosens. Bioelectron. 2021, 192, 113490. [Google Scholar] [CrossRef] [PubMed]
- Toi, P.T.; Trung, T.Q.; Dang, T.M.L.; Bae, C.W.; Lee, N.-E. Highly Electrocatalytic, Durable, and Stretchable Nanohybrid Fiber for On-Body Sweat Glucose Detection. ACS Appl. Mater. Interfaces 2019, 11, 10707–10717. [Google Scholar] [CrossRef]
- Koskun, Y.; Şavk, A.; Şen, B.; Şen, F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 2018, 1010, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, W.; Lu, W.; Shi, L.; Wang, R.; Pang, R.; Cao, Y.; Wang, F.; Xu, X. One-step electrodeposition of AuNi nanodendrite arrays as photoelectrochemical biosensors for glucose and hydrogen peroxide detection. Biosens. Bioelectron. 2019, 142, 111577. [Google Scholar] [CrossRef]
- Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Shen, Q.; Xue, J.; Li, Y.; Gao, G.; Li, Q.; Liu, X.; Jia, H.; Xu, B.; Wu, Y.; Dillon, S.J. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Appl. Catal. B Environ. 2021, 282, 119552. [Google Scholar] [CrossRef]
- Li, Y.; Chang, H.; Wang, Z.; Shen, Q.; Liu, X.; Xue, J.; Jia, H. A 3D C@TiO2 multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation. J. Colloid Interface Sci. 2022, 609, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Shi, W.; Liu, Y.; Li, D.; Yin, H.; Chi, H.; Luo, Y.; Ta, N.; Fan, F.; Wang, X.; et al. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Domen, K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Am. Chem. Soc. 2020, 120, 919–985. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, L.; Hu, C.; Huang, H. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chin. J. Catal. 2021, 42, 1413–1438. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Liu, W.; Zhang, J.; Chen, J.; Li, Y. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production. Chin. J. Catal. 2022, 43, 782–792. [Google Scholar] [CrossRef]
Catalyst | Catalyst (g/L) | Irradiation Time (min) | Wavelength (nm) | Degradation % | References |
---|---|---|---|---|---|
ZnFe2O4 | 0.6 | 360 | 400–700 nm | 32.0 | [99] |
MnFe2O4/rGO | - | 60 | 662 nm | 97 | [102] |
MgFe2O4 | 0.6 | 180 | 400–700 nm | 26.0 | [103] |
CaFe2O4 | 1.0 | 360 | ›420 nm | 28.0 | [104] |
BaFe12O19 | 1.0 | 360 | 420–700 nm | 26.0 | [105] |
COPC-NFs | 0.3 | 30 | 808 nm | 43.9 | Present work |
Catalyst | DC Power (W) | Time (min) | Degradation (%) | References |
---|---|---|---|---|
TiO2 | 500 | 180 | 22.4 | [106] |
CO/TiO2 | 500 | 120 | 74.2 | [106] |
COPC-NFs | 500 | 30 | 99.2 | Present work |
Sensing Materials | Temperature (°C) | Response/Recovery Time | LOD | References | |
---|---|---|---|---|---|
Metal free | BN | 245 | 0.1/0.2 s | 0.52 µgmL−1 | [128] |
F-SiC | 298 | 0.6/1.0 | 3 ppm | [129] | |
Metal oxide | Fe2O3 | 320 | 15/120 | 3 ppm | [130] |
MnO2 | 224 | 0.3/0.4 | 0.28 µgmL−1 | [131] | |
Metal–carbon complex | Mn3O4/g- C3N4 | 184 | 0.6/0.6 | 0.13 µgmL−1 | [132] |
Fe2O3/g-C3N4 | 183 | 0.1/0.6 | 0.5 µgmL−1 | [133] | |
Metal-doped porous carbon nanomaterial | Fe doped Porous carbon | 215 | 0.1/0.6 | 0.13 µGmL−1 | Present work |
Catalyst | Conversion % | Yield % | |||
---|---|---|---|---|---|
Heptane | Octane | Octanol | Others | ||
NiZrO2-C | 54.2 | 38.7 | 6.6 | 3.2 | 5.6 |
NiZrO2-H | 86.4 | 70.3 | 6.9 | 2.6 | 6.3 |
NiZrO2-F | 100.0 | 86.0 | 6.0 | 2.1 | 2.1 |
Catalyst | Conversion % | Yield % | |||
---|---|---|---|---|---|
Heptane | Octane | Octanol | Others | ||
NiZrO2-C | 48.1 | 38.6 | 5.8 | 1.5 | 2.2 |
NiZrO2-H | 80.3 | 69.5 | 7.8 | 1.3 | 1.7 |
NiZrO2-F | 100.0 | 89.3 | 7.1 | 1.2 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Ain, Q.u.; Zahid, S.; Akitsu, T. Nanoframes as a Resilient Candidate for a Broader Spectra of Catalysis Challenges. Symmetry 2024, 16, 452. https://doi.org/10.3390/sym16040452
Ahmad F, Ain Qu, Zahid S, Akitsu T. Nanoframes as a Resilient Candidate for a Broader Spectra of Catalysis Challenges. Symmetry. 2024; 16(4):452. https://doi.org/10.3390/sym16040452
Chicago/Turabian StyleAhmad, Fawad, Qurat ul Ain, Shafaq Zahid, and Takashiro Akitsu. 2024. "Nanoframes as a Resilient Candidate for a Broader Spectra of Catalysis Challenges" Symmetry 16, no. 4: 452. https://doi.org/10.3390/sym16040452