Experimental Design for Testing Local Lorentz Invariance Violations in Gravity
Abstract
:1. Introduction
2. LLI Violation in SME Frame
2.1. LLI Violation: Cartesian Coefficients
2.2. LLI Violation: Spherical Coefficients
3. LLI Violation in Pendulum Experiments
4. Experimental Design and Expected Result for Testing Lorentz Violation
4.1. Experimental Design
4.2. Discussion and Expected Result
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iorio, L. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein’s Theory of Gravitation in Its Centennial Year. Universe 2015, 1, 1:38–1:81. [Google Scholar] [CrossRef]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23:1–23:82. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Quantum Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Samuel, S. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev. D 1989, 39, 683–685. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. CPT and Strings. Nucl. Phys. 1991, B359, 545–570. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. CPT, Strings, and Meson Factories. Phys. Rev. D 1995, 51, 3923–3935. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz Violation, and the Standard Model. Phys. Rev. D 2009, 69, 105009:1–105009:20. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz Violation in Post-Newtonian Gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef]
- Mattingly, D. Modern Tests of Lorentz Invariance. Living. Rev. Relativ. 2005, 8, 5:1–5:84. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. The confrontation between General Relativity and Experiment. Living. Rev. Relativ. 2014, 17, 4:1–4:117. [Google Scholar] [CrossRef] [PubMed]
- Tasson, J.D. The Standard-Model Extension and Gravitational Tests. Symmetry 2016, 8, 111:1–111:16. [Google Scholar] [CrossRef]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Bars, H.P.; Guerlin, C.; Poncin-Lafitte, C.L. Tests of Lorentz Symmetry in the Gravitational Sector. Universe 2016, 2, 30:1–30:40. [Google Scholar] [CrossRef]
- Shao, L.J. Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars. Universe 2016, 2, 29:1–29:5. [Google Scholar] [CrossRef]
- Iorio, L. Orbital effects of Lorentz-Violating Standard Model Extension Gravitomagnetism around a Static Body: A Sensitivity Analysis. Class. Quantum Gravity 2012, 29, 175007:1–175007:7. [Google Scholar] [CrossRef]
- Will, C.M.; Nordtvent, K. Conservation Laws and Preferred Frames in Relativistic Gravity. I: Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 284, 27360:1–27360:37. [Google Scholar] [CrossRef]
- Shao, L.J.; Caballero, R.N.; Kramer, M.; Wex, N.; Champion, D.J.; Jessner, A. A New Limit on Local Lorentz Invariance Violation of Gravity from Solitary Pulsars. Class. Quantum Gravity 2013, 30, 165019:1–165019:20. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russellb, N. Data Tables for Lorentz and CPT Violation. Rev. Modern Phys. 2017, 83, 11. [Google Scholar] [CrossRef]
- Bailey, Q.G. Time Delay and Doppler Tests of the Lorentz Symmetry of Gravity. Phys. Rev. 2009, D80, 044004:1–022006:13. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Rev. Lett. 2009, 102, 010402:1–010402:4. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. 2011, 192, 18:1–18:47. [Google Scholar] [CrossRef]
- Muller, H.; Chiow, S.; Herrmann, S.; Chu, S.; Chung, K.Y. Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity. Phys. Rev. Lett. 2008, 100, 031101:1–031101:4. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; LePoncin-Lafitte, C.; Francou, G.; Angonin, M.C. Testing Lorentz symmetry with Lunar Laser Ranging. Phys. Rev. Lett. 2016, 117, 241301:1–241301:6. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Tasson, J.D. Constraints on Lorentz Violation from Gravitational Č Erenkov Radiation. Phys. Lett. B 2015, 749, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.J. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103:1–111103:5. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.G.; Tan, Y.J.; Tan, W.H.; Yang, S.Q.; Luo, J.; Tobar, M.E.; Bailey, Q.G.; Long, J.C.; Weisman, E.; Xu, R.; et al. Combined Search for Lorentz Violation in Short-Range Gravity. Phys. Rev. Lett. 2016, 117, 071102:1–071102:6. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Zhan, B.F.; Wang, Q.L.; Shao, C.G.; Tu, L.C.; Tan, W.H.; Luo, J. Test of the Gravitational Inverse Square Law at Millimeter Ranges. Phys. Rev. Lett. 2012, 108, 081101:1–081101:8. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.H.; Yang, S.Q.; Shao, C.G.; Li, J.; Du, A.B.; Zhan, B.F.; Wang, Q.L.; Luo, P.S.; Tu, L.C.; Luo, J. New Test of the Gravitational Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation. Phys. Rev. Lett. 2016, 116, 131101:1–131101:5. [Google Scholar] [CrossRef] [PubMed]
- Long, J.C.; Kostelecký, V.A. Search for Lorentz Violation in Short-Range Gravity. Phys. Rev. D 2015, 91, 092003:1–092003:6. [Google Scholar] [CrossRef]
- Shao, C.G.; Chen, Y.F.; Tan, Y.J.; Luo, J.; Yang, S.Q. Enhanced Sensitivity to Lorentz Invariance Violations in Short-Range Gravity Experiments. Phys. Rev. D 2016, 94, 104061:1–104061:12. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-Range Gravity and Lorentz Violation. Phys. Rev. D 2015, 91, 022006:1–022006:6. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT Violation and the Standard Model. Phys. Rev. D 1997, 55, 6760–6774. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002:1–116002:23. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Probing Lorentz and CPT violation with space-based experiments. Phys. Rev. D 2003, 68, 125008:1–125008:14. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A.; Lane, C.D.; Russell, N. Clock-Comparison Tests of Lorentz and CPT Symmetry in Space. Phys. Rev. Lett. 2002, 88, 090801:1–090801:4. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz Violation in Electrodynamics. Phys. Rev. D 2002, 66, 056005:1–056005:24. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Sensitivity of CPT Tests with Neutral Mesons. Phys. Rev. Lett. 1998, 80, 1818:1–1818:4. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, W. Testing Local Lorentz Invariance with Short-Range Gravity. Phys. Lett. B 2017, 766, 137–143. [Google Scholar] [CrossRef]
- Shao, C.G.; Tan, Y.J.; Tan, W.H.; Yang, S.Q.; Luo, J.; Tobar, M.E. Search for Lorentz Invariance Violation through Tests of the Gravitational Inverse Square Law at Short Ranges. Phys. Rev. D 2015, 91, 102007:1–102007:5. [Google Scholar] [CrossRef]
Sources | Error of in Horizontal Stripe-Type Design () | Error of in Vertical Stripe-Type Design () |
---|---|---|
Size error in test mass | 4.0 | 4.0 |
Size error in source mass | 3.9 | 3.8 |
The aligned error in horizontal direction | 1.4 | 5.2 |
The aligned error in height direction | 4.4 | 0.6 |
Horizontal error in experimenting | 0.8 | 6.6 |
Height error in experimenting | 9.1 | 2.5 |
Statistical error (thermal noise) | 0.4 | 0.4 |
Total | 11.7 | 10.4 |
Coefficients | Current Constraint () [37] | Ratio in Horizontal Stripe-Type for and | Ratio in Vertical Stripe-Type for and |
---|---|---|---|
4 | 5 | ||
16 | 21 | ||
16 | 21 | ||
67 | 73 | ||
30 | 32 | ||
4 | 4 | ||
13 | 14 | ||
13 | 14 | ||
44 | 92 | ||
7 | 15 | ||
7 | 7 | ||
7 | 7 | ||
97 | 49 | ||
54 | 27 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-F.; Tan, Y.-J.; Shao, C.-G. Experimental Design for Testing Local Lorentz Invariance Violations in Gravity. Symmetry 2017, 9, 219. https://doi.org/10.3390/sym9100219
Chen Y-F, Tan Y-J, Shao C-G. Experimental Design for Testing Local Lorentz Invariance Violations in Gravity. Symmetry. 2017; 9(10):219. https://doi.org/10.3390/sym9100219
Chicago/Turabian StyleChen, Ya-Fen, Yu-Jie Tan, and Cheng-Gang Shao. 2017. "Experimental Design for Testing Local Lorentz Invariance Violations in Gravity" Symmetry 9, no. 10: 219. https://doi.org/10.3390/sym9100219