New Operations of Picture Fuzzy Relations and Fuzzy Comprehensive Evaluation
Abstract
:1. Introduction
2. Preliminary
2.1. Some Basic Concepts
- (1)
- R ⊆ P iff μR(x, y) ≤ μP(x, y), ηR(x, y) ≤ ηP(x, y), νR(x, y) ≥ νP(x, y);
- (2)
- R ∪ P = {((x, y), μR(x, y) ∨ μP(x, y), ηR(x, y) ∧ ηP(x, y), νR(x, y) ∧ νP(x, y)) | x ∈ X, y ∈ Y};
- (3)
- R ∩ P = {((x, y), μR(x, y) ∧ μP(x, y), ηR(x, y) ∧ ηP(x, y), νR(x, y) ∨ νP(x, y)) | x ∈ X, y ∈ Y};
- (4)
- Rc = {((x, y), νR(x, y), ηR(x, y), μR(x, y)) | x ∈ X, y ∈ Y}.
- (a) (R−1)−1 = R;
- (b) R ⊆ P ⇒ R−1 ⊆ P−1;
- (c1) (R ∪ P)−1 = R−1 ∪ P−1;
- (c2) (R ∩ P)−1 = R−1 ∩ P−1;
- (d1) R ∩ (P ∪ Q) = (R ∩ P) ∪ (R ∩ Q);
- (d2) R ∪ (P ∩ Q) = (R ∪ P) ∩ (R ∪ Q);
- (e) R ∩ P ⊆ R, R ∩ P ⊆ P;
- (f1) If (R ⊇ P) and (R ⊇ Q), then R ⊇ P ∪ Q;
- (f2) If (R ⊆ P) and (R ⊆ Q), then R ⊆ P ∩ Q.
- (1)
- if S(α) > S(β), then α is superior to β, denoted by α ⊱ β;
- (2)
- if S(α) = S(β), then
- (i)
- if H(α) = H(β), implies that α is equivalent to β, denoted by α ~ β;
- (ii)
- if H(α) > H(β), implied that α is superior to β, denoted by α ⊱ β.
2.2. On Inclusion Relation of Picture Fuzzy Relations
= {((x, y), (μR(x, y), ηR(x, y), νR(x, y)) ∨1 (μP(x, y), ηP(x, y), νP(x, y))) | x ∈ X, y ∈ Y};
= {((x, y), (μR(x, y), ηR(x, y), νR(x, y)) ∧1 (μP(x, y), ηP(x, y), νP(x, y))) | x ∈ X, y ∈ Y};
3. New Operations and Properties of Picture Fuzzy Relations
- (1)
- R ⊆2 R;
- (2)
- (R ⊆2 P, P ⊆2 R) ⇒ R = P;
- (3)
- (R ⊆2 P, P ⊆2 Q) ⇒ R ⊆2 Q.
- (1)
- R ∪2 P =
- (2)
- R ∩2 P =
- (3)
- co(R) = Rc2 =
- (1)
- If ∀ (x, y) ∈ X × Y, μR(x, y) = ηR(x, y) = 0 and νR(x, y) = 1, then R is called a null PFR, denoted by ∅N.
- (2)
- If ∀ (x, y) ∈ X × Y, μR(x, y) = 1 and ηR(x, y) = νR(x, y) = 0, then R is called an absolute PFR, denoted by UN.
- (3)
- If ∀ (x, y) ∈ X × Y, μR(x, y) = , ηR(x, y) = 0 and νR(x, y) = , then R is called an identity PFR, denoted by IdN.
- (1)
- If ∀ x ∈ X, μR(x, x) = 1 and ηR(x, x) = νR(x, x) = 0, then R is called a reflexive PFR.
- (2)
- If ∀ (x, y) ∈ X × Y, μR(x, y) = μR(y, x), ηR(x, y) = ηR(y, x), νR(x, y) = νR(y, x), then R is called a symmetric PFR.
- (3)
- If ∀ x ∈ X, μR(x, x) = ηR(x, x) = 0 and νR(x, x) = 1, then R is called an anti-reflexive PFR.
- (1)
- (R ∩2 P) ∪2 Q ≠ (R ∪2 Q) ∩2 (P ∪2 Q),
- (2)
- (R ∪2 P) ∩2 Q ≠ (R ∩2 Q) ∪2 (P ∩2 Q).
- (1)
- R is symmetric iff R = R−1;
- (2)
- (Rc2)−1 = (R−1)c2;
- (3)
- (Rc2)c2 = R, (R−1)−1 = R;
- (4)
- R ⊆2 R ∪2 P, P ⊆2 R ∪2 P;
- (5)
- R ∩2 P ⊆2 R, R ∩2 P ⊆2 P;
- (6)
- If R ⊆2 P, then R−1 ⊆2 P−1;
- (7)
- If R ⊆2 P and Q ⊆2 P, then R ∪2 Q ⊆2 P;
- (8)
- If P ⊆2 R and P ⊆2 Q, then P ⊆2 R ∩2 Q;
- (9)
- If R ⊆2 P, then R ∪2 P = P, R ∩2 P = R;
- (10)
- (R ∪2 P)−1 = R−1 ∪2 P−1, (R ∩2 P)−1 = R−1 ∩2 P−1;
- (11)
- (R ∪2 P)c2 = Rc2 ∩2 Pc2, (R ∩2 P)c2 = Rc2 ∪2 Pc2.
4. Kernels of Picture Fuzzy Relations
- (1)
- The maximal anti-reflexive PFR contained in R is called anti-reflexive kernel of R, denoted by ar(R).
- (2)
- The maximal symmetric PFR contained in R is called symmetric kernel of R, denoted by s(R).
- (1)
- ar(R) = R ∩2 (IdN)c2.
- (2)
- s(R) = R ∩2 R−1.
- (1)
- ar(∅N) = ∅N, ar((IdN)c2) = (IdN)c2;
- (2)
- ∀ R ∈ PFR(X × Y), ar(R) ⊆2 R;
- (3)
- ∀ R, P ∈ PFR(X × Y), ar(R ∪2 P) = ar(R) ∪2 ar(P), ar(R ∩2 P) = ar(R) ∩2 ar(P);
- (4)
- ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then ar(R) ⊆2 ar(P);
- (5)
- ∀ R ∈ PFR(X × Y), ar(ar(R)) = ar(R).
- (1)
- s(∅N) = ∅N, s(UN) = UN, s(IdN) = IdN;
- (2)
- ∀ R ∈ PFR(X × Y), s(R) ⊆2 R;
- (3)
- ∀ R, P ∈ PFR(X × Y), s(R ∩2 P) = s(R) ∩2 s(P);
- (4)
- ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then s(R) ⊆2 s(P);
- (5)
- ∀ R ∈ PFR(X × Y), s(s(R)) = s(R).
5. Closures of Picture Fuzzy Relations
- (1)
- O is reflexive;
- (2)
- R ⊆2 O;
- (3)
- ∀ E ∈ PFR(X × Y), if E is reflexive and R ⊆2 E, then O ⊆2 E.
- (1)
- O is symmetric;
- (2)
- R ⊆2 O;
- (3)
- ∀ E ∈ PFR(X × Y), if E is symmetric and R ⊆2 E, then O ⊆2 E.
- (1)
- (R) = R ∪2 IdN.
- (2)
- (R) = R ∪2 R−1.
- (1)
- (UN) = UN, (IdN) = IdN;
- (2)
- ∀ R ∈ PFR(X × Y), R ⊆2 (R);
- (3)
- ∀ R, P ∈ PFR(X × Y), (R ∪2 P) = (R) ∪2 (P), (R ∩2 P) = (R) ∩2 (P);
- (4)
- ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then (R) ⊆2 (P);
- (5)
- ∀ R ∈ PFR(X × Y), ((R)) = (R).
- (1)
- (∅N) = ∅N, (UN) = UN, (IdN) = IdN;
- (2)
- ∀ R ∈ PFR(X × Y), R ⊆2 (R);
- (3)
- ∀ R, P ∈ PFR(X × Y), (R ∪2 P) = (R) ∪2 (P);
- (4)
- ∀ R, P ∈ PFR(X × Y), if R ⊆2 P, then (R) ⊆2 (P);
- (5)
- ∀ R ∈ PFR(X × Y), ((R)) = (R);
- (1)
- ((Rc2))c2 = ar(R);
- (2)
- ar ((R)) = ar(R).
- (i)
- If x = y and R = IdN, then (IdN)c2 ⊆2 IdN, so ar ((R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
- (ii)
- If x = y and R = (IdN)c2, then (IdN)c2 ⊆2 IdN, so ar ((R)) = (R ∪2 IdN) ∩2 (IdN)c2 = IdN ∩2 (IdN)c2 = (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
- (iii)
- If x = y and (IdN)c2 ⊆2 R ⊆2 IdN, then (IdN)c2 ⊆2 IdN, so ar ((R)) = (R ∪2 IdN) ∩2 (IdN)c2 = IdN ∩2 (IdN)c2 = (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
- (iv)
- If x ≠ y and R = IdN, then IdN ⊆2 (IdN)c2, so ar ((R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
- (v)
- If x ≠ y and R = (IdN)c2, then IdN ⊆2 (IdN)c2, so ar ((R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
- (vi)
- If x ≠ y and IdN ⊆2 R ⊆2 (IdN)c2, then IdN ⊆2 (IdN)c2, so ar ((R)) = (R ∪2 IdN) ∩2 (IdN)c2 = R ∩2 (IdN)c2 = ar(R);
- (1)
- ((Rc2))c2 = s(R);
- (2)
- (s(R)) = s(R);
- (3)
- s((R)) = (R).
6. Picture Fuzzy Comprehensive Evaluation
6.1. Picture Fuzzy Comprehensive Evaluation Model
6.2. The Application Example
= {(0.4, 0.2, 0.2), (0.4, 0.3, 0.3), (0.4, 0.3, 0.2), (0.4, 0, 0.2), (0.3, 0, 0.2)}.
- A(2) = {(0.3, 0.3, 0.2), (0.5, 0.1, 0.1), (0.4, 0.3, 0.2), (0.3, 0.3, 0.2), (0.4, 0, 0.1)};
- A(3) = {(0.3, 0, 0.2), (0.3, 0.5, 0.1), (0.4, 0, 0.1), (0.4, 0, 0.2), (0.3, 0.5, 0.1)};
- A(4) = {(0.6, 0.1, 0.2), (0.3, 0.4, 0.2), (0.3, 0.3, 0.2), (0.5, 0, 0.1), (0.4, 0, 0.2)};
- A(5) = {(0.3, 0, 0.1), (0.4, 0, 0.2), (0.4, 0.2, 0.2), (0.4, 0.4, 0.2), (0.5, 0.3, 0.1)}.
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zhang, X.H.; Pei, D.W.; Dai, J.H. Fuzzy Mathematics and Rough Set Theory; Tsinghua University Press: Beijing, China, 2013. [Google Scholar]
- Zhang, X.H. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2017, 33, 1767–1774. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets. Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Jun, Y.B.; Ahn, S.S. On hesitant fuzzy filters in BE-algebras. J. Comput. Anal. Appl. 2017, 22, 346–358. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 2016, 13, 1–16. [Google Scholar]
- Xu, Z.S. Hesitant Fuzzy Sets Theory; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Molodtsov, D.A. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Qin, K.Y.; Hong, Z.Y. On soft equality. J. Comput. Appl. Math. 2010, 234, 1347–1355. [Google Scholar] [CrossRef]
- Zhan, J.M.; Liu, Q.; Herawan, T. A novel soft rough set: Soft rough hemirings and corresponding multicriteria group decision making. Appl. Soft Comput. 2017, 54, 393–402. [Google Scholar] [CrossRef]
- Akram, M.; Feng, F.; Saeid, A.B.; Leoreanu-Fotea, V. A new multiple criteria decision-making method based on bipolar fuzzy soft graphs. Iran. J. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
- Dai, J.H.; Han, H.F.; Zhang, X.H. Catoptrical rough set model on two universes using granule-based definition and its variable-precision extensions. Inf. Sci. 2017, 390, 70–81. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough sets. Int. J. Inf. Comput. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Shakiba, A.; Hooshmandasl, M.R.; Davvaz, B.; Fazeli, S.A.S. S-approximation spaces: A fuzzy approach. Iran. J. Fuzzy Syst. 2017, 14, 127–154. [Google Scholar]
- Wang, C.Z.; Shao, M.W.; He, Q. Feature subset selection based on fuzzy neighborhood rough sets. Knowl.-Based Syst. 2016, 111, 173–179. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhou, B.; Li, P. A general frame for intuitionistic fuzzy rough sets. Inf. Sci. 2012, 216, 34–49. [Google Scholar] [CrossRef]
- Livi, L.; Sadeghian, A. Granular computing, computational intelligence, and the analysis of non-geometric input spaces. Granul. Comput. 2016, 1, 13–20. [Google Scholar] [CrossRef]
- Sanchez, M.A.; Castro, J.R.; Castillo, O.; Mendoza, O. Fuzzy higher type information granules from an uncertainty measurement. Granul. Comput. 2017, 2, 95–103. [Google Scholar] [CrossRef]
- Yao, Y. A triarchic theory of granular computing. Granul. Comput. 2016, 1, 145–157. [Google Scholar] [CrossRef]
- Peters, G.; Weber, R. DCC: A framework for dynamic granular clustering. Granul. Comput. 2016, 1, 1–11. [Google Scholar] [CrossRef]
- Skowron, A.; Jankowski, A.; Dutta, S. Interactive granular computing. Granul. Comput. 2016, 1, 95–113. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Bridging gaps between several forms of granular computing. Granul. Comput. 2016, 1, 115–126. [Google Scholar] [CrossRef]
- Ciucci, D. Orthopairs and granular computing. Granul. Comput. 2016, 1, 159–170. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Li, X. Approximation performance of the nonlinear hybrid fuzzy system based on variable universe. Granul. Comput. 2017, 2, 73–84. [Google Scholar] [CrossRef]
- Cai, M.; Li, Q.; Lang, G. Shadowed sets of dynamic fuzzy sets. Granul. Comput. 2017, 2, 85–94. [Google Scholar] [CrossRef]
- Huang, B.; Li, H.X. Distance-based information granularity in neighborhood-based granular space. Granul. Comput. 2017. [Google Scholar] [CrossRef]
- Cuong, B.C. Picture Fuzzy Sets-First Results, Part 1, Seminar “Neuro-Fuzzy Systems with Applications”; Preprint 03/2013 and Preprint 04/2013; Institute of Mathematics: Hanoi, Vietnam, 2013. [Google Scholar]
- Cuong, B.C. Picture fuzzy sets. J. Comput. Sci. Cybern. 2014, 30, 409–420. [Google Scholar]
- Cuong, B.C.; Hai, P.V. Some fuzzy logic operators for picture fuzzy sets. In Proceedings of the IEEE Seventh International Conference on Knowledge and Systems Engineering, Ho Chi Minh, Vietnam, 8–10 October 2015; pp. 132–137. [Google Scholar]
- Son, L.H.; Thong, P.H. Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. Appl. Intell. 2017, 46, 1–15. [Google Scholar] [CrossRef]
- Son, L.H.; Viet, P.V.; Hai, P.V. Picture inference system: A new fuzzy inference system on picture fuzzy set. Appl. Intell. 2017, 46, 652–669. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, X.Q.; Tu, H.N.; Tao, S.D. Some geometric aggregation operators based on picture fuzzy sets and their application in multiple attribute decision making. Ital. J. Pure Appl. Math. 2017, 37, 477–492. [Google Scholar]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2016, 1–7. [Google Scholar] [CrossRef]
- Blin, J.M. Fuzzy Relations in Group Decision Theory. J. Cybern. 1974, 4, 17–22. [Google Scholar] [CrossRef]
- Cock, M.D.; Kerre, E.E. On (un) suitable fuzzy relations to model approximate equality. Fuzzy Sets. Syst. 2003, 133, 137–153. [Google Scholar] [CrossRef]
- Tamura, S.; Higuchi, S.; Tanaka, K. Pattern Classification Based on Fuzzy Relations. IEEE Trans. Syst. Man Cybern. 1971, 1, 61–66. [Google Scholar] [CrossRef]
- Yang, M.S.; Shih, H.M. Cluster analysis based on fuzzy relations. Fuzzy Sets. Syst. 2001, 120, 197–212. [Google Scholar] [CrossRef]
- Dai, W.Y.; Zhou, C.M.; Lei, Y.J. Information security evaluation based on multilevel intuitionistic fuzzy comprehensive method. Microelectron. Comput. 2009, 26, 75–179. [Google Scholar]
- Jin, J.L.; Wei, Y.M.; Ding, J. Fuzzy comprehensive evaluation model based on improved analytic hierarchy process. J. Hydraul. Eng. 2004, 3, 65–70. [Google Scholar]
- Qi, F.; Yang, S.W.; Feng, X. Research on the Comprehensive Evaluation of Sports Management System with Interval-Valued Intuitionistic Fuzzy Information. Bull. Sci. Technol. 2013, 2, 031. [Google Scholar]
- Burillo, P.; Bustince, H. Intuitionistic fuzzy relations (Part I). Mathw. Soft Comput. 1995, 2, 5–38. [Google Scholar]
- Bustinee, H. Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets. Syst. 2000, 109, 379–403. [Google Scholar] [CrossRef]
- Lei, Y.J.; Wang, B.S.; Miao, Q.G. On the intuitionistic fuzzy relations with compositional operations. Syst. Eng. Theory Pract. 2005, 25, 30–34. [Google Scholar]
- Yang, H.L.; Li, S.G. Restudy of intuitionistic fuzzy relations. Syst. Eng. Theory Pract. 2009, 29, 114–120. [Google Scholar]
R | y1 | y2 |
---|---|---|
x1 | (0.3, 0.2, 0.1) | (0.5, 0.1, 0.3) |
x2 | (0.2, 0.6, 0.2) | (0.2, 0.1, 0.5) |
R−1 | y1 | y2 |
---|---|---|
x1 | (0.3, 0.2, 0.1) | (0.2, 0.6, 0.2) |
x2 | (0.5, 0.1, 0.3) | (0.2, 0.1, 0.5) |
Rc2 | y1 | y2 |
---|---|---|
x1 | (0.1, 0.6, 0.3) | (0.2, 0, 0.2) |
x2 | (0.3, 0.2, 0.5) | (0.5, 0.3, 0.2) |
P | y1 | y2 |
---|---|---|
x1 | (0.5, 0.2, 0.3) | (0.3, 0.2, 0.4) |
x2 | (0.6, 0.1, 0.2) | (0.7, 0.1, 0.1) |
Q | y1 | y2 |
---|---|---|
x1 | (0.4, 0.1, 0.2) | (0.2, 0.1, 0.1) |
x2 | (0.2, 0.2, 0.5) | (0.1, 0.4, 0.2) |
(R ∩2 P) ∪2 Q | y1 | y2 |
---|---|---|
x1 | (0.4, 0.1, 0.2) | (0.3, 0, 0.1) |
x2 | (0.2, 0.6, 0.2) | (0.2, 0, 0.2) |
(R ∩2 Q) ∪2 (P ∩2 Q) | y1 | y2 |
---|---|---|
x1 | (0.4, 0.4, 0.2) | (0.3, 0, 0.1) |
x2 | (0.2, 0.6, 0.2) | (0.2, 0, 0.2) |
(R ∪2 P) ∩2 Q | y1 | y2 |
---|---|---|
x1 | (0.4, 0.1, 0.2) | (0.2, 0.5, 0.3) |
x2 | (0.2, 0.2, 0.5) | (0.1, 0.4, 0.2) |
(R ∩2 Q) ∪2 (P ∩2 Q) | y1 | y2 |
---|---|---|
x1 | (0.4, 0, 0.2) | (0.2, 0.5, 0.3) |
x2 | (0.2, 0.2, 0.5) | (0.1, 0.4, 0.2) |
R | z1 | z2 | z3 |
---|---|---|---|
z1 | (0.3, 0.2, 0.1) | (0.5, 0.1, 0.3) | (0.3, 0.2, 0.4) |
z2 | (0.2, 0.6, 0.2) | (0.2, 0.1, 0.5) | (0.6, 0.1, 0.2) |
z3 | (0.7, 0.1, 0.1) | (0.4, 0.1, 0.2) | (0.2, 0.2, 0.5) |
ar(R) | z1 | z2 | z3 |
---|---|---|---|
z1 | (0, 0, 1) | (0.5, 0.1, 0.3) | (0.3, 0.2, 0.4) |
z2 | (0.2, 0.6, 0.2) | (0, 0, 1) | (0.6, 0.1, 0.2) |
z3 | (0.7, 0.1, 0.1) | (0.4, 0.1, 0.2) | (0, 0, 1) |
s(R) | z1 | z2 | z3 |
---|---|---|---|
z1 | (0.3, 0.2, 0.1) | (0.2, 0.5, 0.3) | (0.3, 0.2, 0.4) |
z2 | (0.2, 0.5, 0.3) | (0.2, 0.1, 0.5) | (0.4, 0.1, 0.2) |
z3 | (0.3, 0.2, 0.4) | (0.4, 0.1, 0.2) | (0.2, 0.2, 0.5) |
(R) | z1 | z2 | z3 |
---|---|---|---|
z1 | (1, 0, 0) | (0.5, 0.1, 0.3) | (0.3, 0.2, 0.4) |
z2 | (0.2, 0.6, 0.2) | (1, 0, 0) | (0.6, 0.1, 0.2) |
z3 | (0.7, 0.1, 0.1) | (0.4, 0.1, 0.2) | (1, 0, 0) |
(R) | z1 | z2 | z3 |
---|---|---|---|
z1 | (0.3, 0.2, 0.1) | (0.5, 0, 0.2) | (0.7, 0.1, 0.1) |
z2 | (0.5, 0, 0.2) | (0.2, 0.1, 0.5) | (0.6, 0.1, 0.2) |
z3 | (0.7, 0.1, 0.1) | (0.6, 0.1, 0.2) | (0.2, 0.2, 0.5) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, C.; Zhang, X. New Operations of Picture Fuzzy Relations and Fuzzy Comprehensive Evaluation. Symmetry 2017, 9, 268. https://doi.org/10.3390/sym9110268
Bo C, Zhang X. New Operations of Picture Fuzzy Relations and Fuzzy Comprehensive Evaluation. Symmetry. 2017; 9(11):268. https://doi.org/10.3390/sym9110268
Chicago/Turabian StyleBo, Chunxin, and Xiaohong Zhang. 2017. "New Operations of Picture Fuzzy Relations and Fuzzy Comprehensive Evaluation" Symmetry 9, no. 11: 268. https://doi.org/10.3390/sym9110268