Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley)
Abstract
:1. Introduction
2. Infrared Spectroscopy
2.1. Spectral-Data Preprocessing
2.2. Types of Regression Used to Develop Prediction Model
2.3. Validation and Performance of Model
3. Using Infrared Spectroscopy to Quantify Fusariotoxins in Corn, Wheat, and Barley
4. Conclusions
Conflicts of Interest
Abbreviations
ANN | Artificial neural networks |
ATR | Attenuated total reflection |
DA | Discriminant analysis |
DON | Deoxynivalenol |
FDK | Fusarium damaged kernel |
FT-NIR | Fourier transform near infrared spectroscopy |
FUM | Fumonisins |
LC-MS | Liquid chromatography-mass spectrometry |
KNN | K-nearest neighbor classification |
LDA | Linear discriminant analysis |
MIR | Mid-infrared wavelength |
MPL | Multilayer perceptron neural network |
NIR | Near-infrared wavelength |
PCA | Principal component analysis |
PCR | Polymerase chain reaction |
PLS | Partial least squares regression |
PLSDA | Partial least squares discriminant analysis |
SVM | Support vector machines |
VIS | Visible wavelength |
ZON | Zearalenone |
References
- Organisation for Economic Co-operation and Development/Food and Agriculture Organization (OECD/FAO). Perspectives Agricoles de L’Ocde et de la Fao (Édition 2016), Statistiques Agricoles de L’Ocde (Database); OECD: Paris, France; FAO: Rome, Italy, 2016. [Google Scholar]
- Gelderblom, W.C.; Jaskiewicz, K.; Marasas, W.F.; Thiel, P.G.; Horak, R.M.; Vleggaar, R.; Kriek, N.P. Fumonisins—Novel mycotoxins with cancer-promoting activity produced by fusarium moniliforme. Appl. Environ. Microbiol. 1988, 54, 1806–1811. [Google Scholar] [PubMed]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Bramhmbhatt, H.; Szabo-Vezse, M.; Poma, A.; Coker, R.; Piletsky, S.A. Analytical methods for determination of mycotoxins: An update (2009–2014). Anal. Chim. Acta 2015, 901, 12–33. [Google Scholar] [CrossRef] [PubMed]
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef]
- Charmley, L.L.; Trenholm, H.L.; Prelusky, D.B.; Rosenberg, A. Economic losses and decontamination. Nat. Toxins 2006, 3, 199–203. [Google Scholar] [CrossRef]
- Dohlman, E. Mycotoxin hazards and regulations: Impacts on food and animal feed crop trade. In International Trade and Food Safety: Economic Theory and Case Studies; Buzby, J., Ed.; Agricultural Economic Report 828; USDA: Washington, DC, USA, 2003. [Google Scholar]
- Rasch, C.; Kumke, M.; Löhmannsröben, H.-G. Sensing of mycotoxin producing fungi in the processing of grains. Food Bioprocess Technol. 2010, 3, 908–916. [Google Scholar] [CrossRef]
- Berthiller, F.; Schuhmacher, R.; Buttinger, G.; Krska, R. Rapid simultaneous determination of major type a- and b-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2005, 1062, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Bueno, D.; Istamboulie, G.; Muñoz, R.; Marty, J.L. Determination of mycotoxins in food: A review of bioanalytical to analytical methods. Appl. Spectrosc. Rev. 2015, 50, 728–774. [Google Scholar] [CrossRef]
- Orina, I.; Manley, M.; Williams, P.J. Non-destructive techniques for the detection of fungal infection in cereal grains. Food Res. Int. 2017, 100, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Teye, E.; Huang, X.-Y.; Afoakwa, N. Review on the potential use of near infrared spectroscopy (nirs) for the measurement of chemical residues in food. Am. J. Food Sci. Technol. 2013, 1, 1–8. [Google Scholar]
- Osborne, B.; Fearn, T.; Hindle, P.H. Practical Nir Spectroscopy with Applications in Food and Beverage Analysis, 2nd ed.; Addison-Wesley Longman Ltd.: Harlow, UK, 1993; p. 227. [Google Scholar]
- Mahaut, B. Near infrared spectrometry as a tool for grading cereals. Photoniques 2008, 34, 60–63. [Google Scholar]
- Alander, J.T.; Bochko, V.; Martinkauppi, B.; Saranwong, S.; Mantere, T. A review of optical nondestructive visual and near-infrared methods for food quality and safety. Int. J. Spectrosc. 2013, 2013, 36. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early detection of fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J., Jr.; Westerhaus, M.O. Application of nir spectroscopy to agricultural products. In Handbook of Near-Infrared Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Whitaker, T.; Slate, A.; Adams, J.; Birmingham, T.; Giesbrecht, F. Comparing the performance of sampling plans that use a single regulatory limit based upon total aflatoxins to sampling plans that use dual limits based upon b1 and total aflatoxins. World Mycotoxin J. 2010, 3, 35–44. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Dell’Orto, V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013, 183, 1–16. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins—An update. J. Stored Prod. Res. 2017, 71, 22–40. [Google Scholar] [CrossRef]
- Levasseur-Garcia, C. Infrared spectroscopy applied to identification and detection of microorganisms and their metabolites on cereals (corn, wheat, and barley). In Agricultural Science; Aflakpui, D.G., Ed.; InTech: Rijeka, Croatia, 2012; pp. 185–196. [Google Scholar]
- McMullin, D.; Mizaikoff, B.; Krska, R. Advancements in ir spectroscopic approaches for the determination of fungal derived contaminations in food crops. Anal. Bioanal. Chem. 2015, 407, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Cho, B.-K. Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review. J. Biosyst. Eng. 2015, 40, 67–77. [Google Scholar] [CrossRef]
- Campbell, N.A. Biology, 3rd ed.; De Boeck Université: Bruxelles, Belgium, 1995; p. 1190. [Google Scholar]
- Ma, G.; Allen, H.C. Handbook of Spectroscopy; Guunter Gauglitz and Tuan Vo-Dinh: Weinheim, Germany, 2003; Volumes 1 and 2, p. 1168. [Google Scholar]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis, Revised and Expanded, 3rd ed.; Marcel Dekker Inc.: New York, NY, USA, 2007. [Google Scholar]
- Agelet, L.E.; Hurburgh, C.R. A tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem. 2010, 40, 246–260. [Google Scholar] [CrossRef]
- Massart, D.L.; Vandeginste, B.G.; Buydens, L.M.C.; Lewi, P.J.; Smeyers-Verbeke, J.; Jong, S.D. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier Science Inc.: New York, NY, USA, 1997; p. 867. [Google Scholar]
- Sun, D.-W. Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.W., Ed.; National University of Ireland: Dublin, Ireland; Academic Press: Cambridge, MA, USA; Elsevier Science: New York, NY, USA, 2009; p. 424. [Google Scholar]
- Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef] [PubMed]
- Fearn, T. Chemometrics: An enabling tool for nir. NIR News 2005, 16, 17–19. [Google Scholar] [CrossRef]
- Hurschka, E.R. Data analysis: Wavelength selection methods. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K.H., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 1987; pp. 35–53. [Google Scholar]
- Luypaert, J.; Heuerding, S.; de Jong, S.; Massart, D.L. An evaluation of direct orthogonal signal correction and other preprocessing methods for the classification of clinical study lots of a dermatological cream. J. Pharm. Biomed. Anal. 2002, 30, 453–466. [Google Scholar] [CrossRef]
- Bertrand, D. La spectroscopie proche infrarouge et ses applications dans les industries de l’alimentation animale. INRA Prod. Anim. 2002, 15, 209–219. [Google Scholar]
- Bertrand, D.; Dufour, E. La Spectroscopie Infrarouge et ses Applications Analytiques; Tec & Doc Lavoisier: Paris, France, 2005; p. 692. [Google Scholar]
- Geladi, P.; McDougel, D.; Martens, H. Linearization and scatter correction for near infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Pumphrey, M.O.; Dowell, F.E. Nir absorbance characteristics of deoxynivalenol and of sound and fusarium-damaged wheat kernels. J. Near Infrared Spectrosc. 2009, 17, 213–221. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Pumphrey, M.O.; Dong, Y.; Maghirang, E.B.; Berzonsky, W.; Dowell, F.E. Near-infrared spectroscopic method for identification of fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chem. 2010, 87, 511–517. [Google Scholar] [CrossRef]
- Bezdekova, K.; Bradacova, M. A Verification of the Possibility of mycoToxin Determination in Barley Caryopses by Near-Infrared Spectroscopy; Škarpa, P., Ryant, P., Cerkal, R., Polak, O., Kovarnik, J., Eds.; Mendelova Univerzita v Brně: Brno, Czech Republic, 2013; pp. 634–638. [Google Scholar]
- Stasiewicz, M.J.; Falade, T.D.O.; Mutuma, M.; Mutiga, S.K.; Harvey, J.J.W.; Fox, G.; Pearson, T.C.; Muthomi, J.W.; Nelson, R.J. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in kenyan maize. Food Control 2017, 78, 203–214. [Google Scholar] [CrossRef]
- Dardenne, P.; Sinnaeve, G.; Baeten, V. Multivariate calibration and chemometrics for near infrared spectroscopy: Which method? J. Near Infrared Spectrosc. 2000, 8, 229–237. [Google Scholar] [CrossRef]
- Tuffery, S. Data Mining and Statistics for Decision Making; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; p. 533. [Google Scholar]
- Tibola, C.S.; Fernandes, J.M.C.; Delanora, R. Predicting wheat mycotoxin content using near-infrared reflectance spectroscopy. In Proceedings of the 2010 National Fusarium Head Blight Forum, Milwaukee, WI, USA, 7–9 December 2010; Canty, S., Clark, A., Anderson-Scully, A., Ellis, E., Van Sanford, D., Eds.; University of Kentucky: Lexington, KY, USA; p. 121. [Google Scholar]
- Dvoracek, V.; Prohaskova, A.; Chrpova, J.; Stockova, L. Near infrared spectroscopy for deoxynivalenol content estimation in intact wheat grain. Plant Soil Environ. 2012, 58, 196–203. [Google Scholar]
- Gaspardo, B.; Del Zotto, S.; Torelli, E.; Cividino, S.R.; Firrao, G.; Della Riccia, G.; Stefanon, B. A rapid method for detection of fumonisins b-1 and b-2 in corn meal using fourier transform near infrared (ft-nir) spectroscopy implemented with integrating sphere. Food Chem. 2012, 135, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Della Riccia, G.; Del Zotto, S. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra. Food Chem. 2013, 141, 4289–4294. [Google Scholar]
- De Girolamo, A.; Cervellieri, S.; Visconti, A.; Pascale, M. Rapid analysis of deoxynivalenol in durum wheat by ft-nir spectroscopy. Toxins 2014, 6, 3129–3143. [Google Scholar] [CrossRef] [PubMed]
- Levasseur-Garcia, C.; Kleiber, D. A method for the allotment of maize contaminated by toxins. J. Near Infrared Spectrosc. 2015, 23, 255–265. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the pls method. In Lecture Notes in Mathematics; Ruhe, A., Kågström, B., Eds.; Springer Verlag: Heidelberg, Germany, 1982; pp. 286–293. [Google Scholar]
- Borggard, C.; Thodberg, H.H. Optimal minimal neural interpretation of spectra. Anal. Chem. 1992, 64, 545–551. [Google Scholar] [CrossRef]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists Inc.: St. Paul, MN, USA, 1987; p. 330. [Google Scholar]
- Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002. [Google Scholar]
- Givens, D.I.; De Boever, J.L.; Deaville, E.R. The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr. Res. Rev. 1997, 10, 83–114. [Google Scholar] [CrossRef] [PubMed]
- Miguel Gomez, M.A.; Bratos Perez, M.A.; Martin Gil, F.J.; Duenas Diez, A.; Martin Rodriguez, J.F.; Gutierrez Rodriguez, P.; Orduna Domingo, A.; Rodriguez Torres, A. Identification of species of brucella using fourier transform infrared spectroscopy. J. Microbiol. Methods 2003, 55, 121–131. [Google Scholar] [CrossRef]
- Fraenkel, H.; Gough, P.B.; Maughan, W.S. Method and Apparatus for Sorting Agricultural Products. U.S. Patent 4203522, 20 May 1980. [Google Scholar]
- Davies, A.M.C.; Dennis, C.; Grant, A. Screening of tomato purée for excessive mould content by near-infrared spectroscopy : A preliminary evaluation. J. Sci. Food Agric. 1987, 39, 349–355. [Google Scholar] [CrossRef]
- Draganova, T.; Daskalov, P.; Tsonev, R. An approach for identifying of fusarium infected maize grains by spectral analysis in the visible and near infrared region, simca models, parametric and neural classifiers. Int. J. Bioautom. 2010, 14, 119–128. [Google Scholar]
- Tallada, J.G.; Wicklow, D.T.; Pearson, T.C.; Armstrong, P.R. Detection of fungus-infected corn kernels using near-infrared reflectance spectroscopy and color imaging. Trans. Asabe 2011, 54, 1151–1158. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Bockus, W.W.; Dowell, F.E. Infrared spectral properties of germ, pericarp, and endosperm sections of sound wheat kernels and those damaged by fusarium graminearum. Appl. Spectrosc. 2012, 66, 1053–1060. [Google Scholar] [CrossRef]
- Balut, A.L.; Clark, A.J.; Brown-Guedira, G.; Souza, E.; Van Sanford, D.A. Validation of fhb1 and qfhs.Nau-2dl in several soft red winter wheat populations. Crop Sci. 2013, 53, 934–945. [Google Scholar] [CrossRef]
- Jin, F.; Bai, G.; Zhang, D.; Dong, Y.; Ma, L.; Bockus, W.; Dowell, F. Fusarium-damaged kernels and deoxynivalenol in fusarium-infected u.S. Winter wheat. Phytopathology 2014, 104, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Kautzman, M.E.; Wickstrom, M.L.; Scott, T.A. The use of near infrared transmittance kernel sorting technology to salvage high quality grain from grain downgraded due to fusarium damage. Anim. Nutr. 2015, 1, 41–46. [Google Scholar] [CrossRef]
- Miedaner, T.; Han, S.; Kessel, B.; Ouzunova, M.; Schrag, T.; Utz, F.H.; Melchinger, A.E. Prediction of deoxynivalenol and zearalenone concentrations in fusarium graminearum inoculated backcross populations of maize by symptom rating and near-infrared spectroscopy. Plant Breed. 2015, 134, 529–534. [Google Scholar] [CrossRef]
- Kos, G.; Sieger, M.; McMullin, D.; Zahradnik, C.; Sulyok, M.; Oner, T.; Mizaikoff, B.; Krska, R. A novel chemometric classification for ftir spectra of mycotoxin-contaminated maize and peanuts at regulatory limits. Food Addit. Contam. Part A 2016, 33, 1596–1607. [Google Scholar] [CrossRef] [PubMed]
- Sieger, M.; Kos, G.; Sulyok, M.; Godejohann, M.; Krska, R.; Mizaikoff, B. Portable infrared laser spectroscopy for on-site mycotoxin analysis. Sci. Rep. 2017, 7, 44028. [Google Scholar] [CrossRef] [PubMed]
- Alcalà, M.; Blanco, M.; Moyano, D.; Broad, N.W.; O’Brien, N.; Friedrich, D.; Pfeifer, F.; Siesler, H.W. Qualitative and quantitative pharmaceutical analysis with a novel hand-held miniature near infrared spectrometer. J. Near Infrared Spectrosc. 2013, 21, 445–457. [Google Scholar] [CrossRef]
- Williams, P.C. Implementation of near-infrared technology. In Near Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001. [Google Scholar]
- Hirano, S.; Okawara, N.; Narazaki, S. Near infrared detection of internally moldy nuts. Biosci. Biotechnol. Biochem. 1998, 62, 102–107. [Google Scholar] [CrossRef] [PubMed]
- De Girolamo, A.; Lippolis, V.; Nordkvist, E.; Visconti, A. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by fourier-transform near infrared (ft-nir) spectroscopy. Food Addit. Contam. Part A 2009, 26, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Krska, R.; Schubert-Ullrich, P.; Molinelli, A.; Sulyok, M.; Macdonald, S.; Crews, C. Mycotoxin analysis: An update. Food Addit. Contam. 2008, 25, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, K.D.; Walsh, M.G. Infrared spectroscopy—Enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J. Near Infrared Spectrosc. 2007, 15, 1–19. [Google Scholar] [CrossRef]
- Norris, K. Hazards with near infrared spectroscopy in detecting contamination. J. Near Infrared Spectrosc. 2009, 17, 165–166. [Google Scholar] [CrossRef]
- Levasseur-Garcia, C.; Bailly, S.; Kleiber, D.; Bailly, J.-D. Assessing risk of fumonisin contamination in maize using near-infrared spectroscopy. J. Chem. 2015, 2015, 10. [Google Scholar] [CrossRef]
- Copetti, M.V.; Iamanaka, B.T.; Pereira, J.L.; Lemes, D.P.; Nakano, F.; Taniwaki, M.H. Co-occurrence of ochratoxin a and aflatoxins in chocolate marketed in brazil. Food Control 2012, 26, 36–41. [Google Scholar] [CrossRef]
- Pei-Shih, L. Infrared spectroscopy detection of fungal infections and mycotoxins for food safety concerns. J. Infect. Dis. Ther. 2015, 3, 241. [Google Scholar]
- Lattanzio, V.M.T.; Pascale, M.; Visconti, A. Current analytical methods for trichothecene mycotoxins in cereals. TrAC Trends Anal. Chem. 2009, 28, 758–768. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Battilani, P. Fumonisins and their modified forms, a matter of concern in future scenario? World Mycotoxin J. 2016, 9, 727–739. [Google Scholar] [CrossRef]
- Mignani, A.G.; Ciaccheri, L.; Mencaglia, A.A.; De Girolamo, A.; Lippolis, V.; Pascale, M. In Rapid screening of wheat bran contaminated by deoxynivalenol mycotoxin using raman spectroscopy: A preliminary experiment. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors (EWOFS’2016), Limerick, Ireland, 31 May–3 June 2016; p. 99160W. [Google Scholar]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Arnal Barbedo, J.G.; Tibola, C.S.; Pontes Lima, M.I. Deoxynivalenol screening in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2017, 155, 24–32. [Google Scholar] [CrossRef]
- Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A review. Appl. Spectrosc. Rev. 2013, 48, 142–159. [Google Scholar] [CrossRef]
- Del Fiore, A.; Reverberi, M.; Ricelli, A.; Pinzari, F.; Serranti, S.; Fabbri, A.A.; Bonifazi, G.; Fanelli, C. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. Int. J. Food Microbiol. 2010, 144, 64–71. [Google Scholar] [CrossRef] [PubMed]
k = number of factors, yi = n measured values, predicted values | ||
r2 | Determination coefficient | |
Bias (same units as reference value) | Bias | |
SEC (same units as reference value) | Standard Error of Calibration | |
SEPc (same units as reference value) | Standard Error of Prediction (corrected by the bias) | |
RMSEP (same units as reference value) | Root Mean Square Error of Prediction | |
RPD | Ratio of Performance to Deviation |
Mycotoxin or Fungi | Crop/Number of Samples/Sample Preparation | Spectral Range | Performance and Characteristic Wavelengths | Reference |
---|---|---|---|---|
DON | Wheat: 30 kernels artificially inoculated/Single kernel | NIR 950–1650 nm | DON band absorption: 1408 nm, 1904 nm, 1919 nm Differences at 1204 nm, 1365 nm and 1700 nm, attributed to changes in food reserves such as starches, proteins, and lipids. | Peiris et al. (2009) [39] |
Fusarium-damaged kernels | Corn: 600 spectra in training set and 300 spectra in test set/Single kernel (spectra collected on germ side and on other side of grain) | NIR 400–2498 nm | SIMCA classifier or Probabilistic Neural Network: best results: healthy grains well classified = 99.3%, 98.7% for infected grains Grain position (germ side or other side) is a significant factor for disease detection | Draganova et al. (2010) [59] |
DON—Fusarium-damaged kernels | Wheat/single kernels | Prediction of DON levels in kernels having > 60 ppm DON : sorting | Peiris et al. (2010) [40] | |
DON—ZON | Wheat: 196 samples for DON, 120 samples for ZON/Whole and milled grains | NIR 400–2500 nm | Whole kernels: DON(LC-MSMS)—DON(IR): r2 = 0.89 SECV = 612.05 µg kg−1 Milled kernels: DON(LC-MSMS)—DON(IR): r2 = 0.91 SECV = 578.33 µg kg−1 Whole kernels: ZON(LC-MSMS)—ZON(IR): r2 = 0.86 SECV = 254.29 µg kg−1 Milled kernels: ZON(LC-MSMS)—ZON(IR): r2 = 0.87 SECV = 231.85 µg kg−1 | Tibola et al. (2010) [45] |
Aspergillus flavus, Bipolaris zeicola, Diplodia maydis, Fusarium oxysporum, Penicillium oxalicum, Penicillium funiculosum, Trichoderma harzianum | Corn: 864 inoculated single kernels 0 to 100% infected | NIR 904–1685 nm | All levels of infection: LDA accuracy: 89% on control, 79% on infected MLP accuracy: 84% on control, 83% on infected False negatives: caused by inclusion of asymptomatic kernels | Tallada et al. (2011) [60] |
DON | 399 wheat samples—whole grains artificially infected | FT-NIR 10,000–400 cm−1 | Reference = ELISA PLS 0 < DON < 92 mg/kg: r = 0.94; SEP = 6.23 mg/kg; RPD = 3.02 0 < DON < 30 mg/kg: r = 0.92; SEP = 2.43 mg/kg; RPD = 2.60 PLS-DA: improvement from the best PLS model: r = 0.92, SEP = 2.35 mg/kg Identification of two spectral regions (1390–1770 nm and 1880–2070 nm) | Dvoracek et al. (2012) [46] |
Fumonisins B1 and B2 | Corn milled grains: 168 samples | FT-NIR 650–2500 nm | PLS: r2 = 0.964, SEC = 0.433 mg/kg, SEP = 0.839 mg/kg, RPD = 1.2 | Gaspardo et al. (2012) [47] |
DON—Fusarium-damaged kernels | Wheat Grains were dissected, and each section was pressed to the ATR diamond crystal | FT-MIR 4000–380 cm−1 | Marked differences in absorption patterns between sound and fusarium damaged pericarp and germ spectra: shift 1035 cm−1 and increased absorptions at 1160, 1203, 1313, and 1375 cm−1 (influence of DON and fungi on wheat matrix) | Peiris et al. (2012) [61] |
DON—Fusarium-damaged kernels | Wheat Whole grains? | NIR 950–1650 nm | FDK-FDKNIR: r = 0.70 (2010) and 0.73 (2011) DON-DONNIR: r = 0.56 (2010) and 0.63 (2011) Differences due to changes in carbohydrate, lipid, protein, and DON levels, and physical properties of the kernels | Balut et al. (2013) [62] |
DON—NIV | Barley: 200 spectra—cross-validation Milled grains | NIR 12,000–4000 cm−1 | DON-DONNIR: r = 0.875 rcrossval = 0.513 RMSEC = 0.147 e3, RMSECV = 0.268 e3RMSEP = 0.399 e3 NIV-NIVNIR: r = 0.828 rcrossval = 0.744 RMSEC = 0.310 e3 RMSECV = 0.371 e3 RMSEP = 0.433 e3 models applicable only for detection of highly contaminated grain lots | Bezdekova and Bradacova (2013) [41] |
Fumonisins | Corn Milled grains | FT-NIR 650–2500 nm | PLS HPLC r2 = 0.995; SEC = 0.232, r2 = 0.908; SEP = 0.933Evaluation of the screening and classification ability with thresholds corresponding to legal limits | Della Riccia and Del Zotto (2013) [48] |
DON | Wheat 464 samples Milled grains | FT-NIR 10,000–4000 cm−1 | PLS traces < DON < 16,000 µg/kg RMSEP = 1977 µg/kg ≥ poor ability LDA 3 classes (DON ≤ 1000 µg/kg)-1000 < DON < 2500 µg/kg-DON > 2000 µg/kg) 75–90% accuracy | De Girolamo et al. (2014) [49] |
DON—Fusarium-damaged kernels | Wheat: 291 inoculated single kernels DON levels: 0.49 to 29.25 mg/kg | NIR | 291 samples for FDK estimation 148 samples for DON estimation DON(GC-MS)-DON(IR): r2 = 0.46, p < 0.001 FDK(visual): FDK(IR): (r2 = 0.52, p < 0.001). | Jin et al. (2014) [63] |
DON—Fusarium-damaged kernels | Wheat/Single kernel | NIR 1100–1700 nm | Creation of several lots of varying quality (FDK et DON), based on the crude protein. | Kautzman et al. (2015) [64] |
DON and fumonisins | 381 samples for DON 511 samples for FUM/Whole grains | NIR 400–2498 nm | Reference: HPLC MS discriminant analysis Accuracies from 60 to 84% with external validation | Levasseur-Garcia and Kleiber (2015) [50] |
DON—ZON | Corn artificially inoculated 9 < DON < 920 mg/kg Milled grains | NIR | r(DON/DON immunotest) = 0.80 | Miedaner et al. (2015) [65] |
DON | 110 corn samples (naturally and artificially infected) Milled grains—100–250 µm sieve fraction | MIR 4000–575 cm−1 | Carbohydrate (1000 cm−1) and protein (1500 cm−1)-related vibrations ≥ spectral window used for modelling: 1800–800 cm−1 Classification threshold (cross-validation): 1750 µg/kg: overall classification accuracy = 79% 500 µg/kg: overall classification accuracy = 85% | Kos et al. (2016) [66] |
DON | Corn (24 samples), wheat Grains extracts | MIR 1820–1560 cm−1 | Alterations of the sample matrix caused by fungal infection: 1655, 1710, 1740 cm−1 ≥ Classification of grain | Sieger et al. (2017) [67] |
Fumonisins | Corn (453 grains) Single kernels | Multispectral VIS-NIR | First round: 470, 527, 624, 850, 880, 910, 940, 1070 nm second round: 910, 940, 970, 1050, 1070, 1200, 1300, 1450, 1550 nm LDA ≥ maximum cross-validation sensitivity (77%) and sensibility (83%) to reject corn kernels with fumonisin >1000 ng/g | Stasiewicz et al. (2017) [42] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levasseur-Garcia, C. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins 2018, 10, 38. https://doi.org/10.3390/toxins10010038
Levasseur-Garcia C. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins. 2018; 10(1):38. https://doi.org/10.3390/toxins10010038
Chicago/Turabian StyleLevasseur-Garcia, Cecile. 2018. "Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley)" Toxins 10, no. 1: 38. https://doi.org/10.3390/toxins10010038
APA StyleLevasseur-Garcia, C. (2018). Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins, 10(1), 38. https://doi.org/10.3390/toxins10010038