The Presence of Opportunistic Premise Plumbing Pathogens in Residential Buildings: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Sites
3.2. Pathogens Identified and Prevalence
3.3. Antimicrobial Resistance
3.4. Detection Methods
4. Discussion
4.1. Control of Opportunistic Premise Plumbing Pathogens
4.2. Pathogen Detection from Environmental Sources
4.3. Epidemiological Investigations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Drinking-Water. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 2 July 2021).
- CDC. Implications of Waterborne Disease Estimates. Available online: https://www.cdc.gov/healthywater/surveillance/burden/implications.html (accessed on 16 August 2021).
- Collier, S.A.; Deng, L.; Adam, E.A.; Benedict, K.M.; Beshearse, E.M.; Blackstock, A.J.; Bruce, B.B.; Derado, G.; Edens, C.; Fullerton, K.E.; et al. Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg. Infect. Dis. 2021, 27, 140–149. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Report on the Environment. Available online: https://www.epa.gov/report-environment (accessed on 18 November 2021).
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; U.S. Geological Survey: Reston, VA, USA, 2018; Volume 1441, p. 76.
- Neu, L.; Hammes, F. Feeding the building plumbing microbiome: The importance of synthetic polymeric materials for biofilm formation and management. Water 2020, 12, 1774. [Google Scholar] [CrossRef]
- Falkinham, J.O., 3rd. Common features of opportunistic premise plumbing pathogens. Int. J. Environ. Res. Public Health 2015, 12, 4533–4545. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O.; Pruden, A.; Edwards, M. Opportunistic premise plumbing pathogens: Increasingly important pathogens in drinking water. Pathogens 2015, 4, 373–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.R.; Pryor, M.; Fields, B.; Lucas, C.; Phelan, M.; Besser, R.E. Introduction of monochloramine into a municipal water system: Impact on colonization of buildings by Legionella spp. Appl. Environ. Microbiol. 2006, 72, 378–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogoa, E.; Bodet, C.; Morel, F.; Rodier, M.H.; Legube, B.; Héchard, Y. Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments. Appl. Environ. Microbiol. 2011, 77, 4974–4980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Masters, S.; Hong, Y.J.; Stallings, J.; Falkinham, J.O.; Edwards, M.A.; Pruden, A. Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, Mycobacteria, Pseudomonas aeruginosa, and two amoebas. Environ. Sci. Technol. 2012, 46, 11566–11574. [Google Scholar] [CrossRef] [PubMed]
- Nisar, M.A.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. Legionella pneumophila and protozoan hosts: Implications for the control of hospital and potable water systems. Pathogens 2020, 9, 286. [Google Scholar] [CrossRef]
- WHO. WHO Methods and Data Sources for Life Tables 1990–2019. Available online: https://www.who.int/docs/default-source/gho-documents/global-health-estimates/ghe2019_life-table-methods.pdf?sfvrsn=c433c229_5 (accessed on 12 October 2021).
- De Sousa Vale, J.; Franco, A.I.; Oliveira, C.V.; Araújo, I.; Sousa, D. Hospital at home: An overview of literature. Home Health Care Manag. Pract. 2019, 32, 118–123. [Google Scholar] [CrossRef]
- Di Mascolo, M.; Espinouse, M.-L.; Hajri, Z.E. Planning in home health care structures: A literature review. IFAC-PapersOnLine 2017, 50, 4654–4659. [Google Scholar] [CrossRef]
- Houston, V.; Foster, M.; Borg, D.N.; Nolan, M.; Seymour-Jones, A. From hospital to home with NDIS funded support: Examining participant pathway timeframes against discharge expectations. Aust. Soc. Work 2020, 73, 175–190. [Google Scholar] [CrossRef]
- Montalto, M.; McElduff, P.; Hardy, K. Home ward bound: Features of hospital in the home use by major Australian hospitals, 2011–2017. Med. J. Aust. 2020, 213, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Landers, S.; Madigan, E.; Leff, B.; Rosati, R.J.; McCann, B.A.; Hornbake, R.; MacMillan, R.; Jones, K.; Bowles, K.; Dowding, D.; et al. The future of home health care: A strategic framework for optimizing value. Home Health Care Manag. Pract. 2016, 28, 262–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brocard, E.; Antoine, P.; Mélihan-Cheinin, P.; Rusch, E. COVID-19’s impact on home health services, caregivers and patients: Lessons from the French experience. Lancet Reg. Health-Eur. 2021, 8, 100197. [Google Scholar] [CrossRef]
- CDC. Healthcare-Associated Infections (HAIs). Available online: https://www.cdc.gov/winnablebattles/report/HAIs.html (accessed on 12 October 2021).
- ACSQHC. Healthcare-Associated Infection Program. Available online: https://www.safetyandquality.gov.au/our-work/healthcare-associated-infection (accessed on 12 October 2021).
- Weiner-Lastinger, L.M.; Pattabiraman, V.; Konnor, R.Y.; Patel, P.R.; Wong, E.; Xu, S.Y.; Smith, B.; Edwards, J.R.; Dudeck, M.A. The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network. Infect. Control Hosp. Epidemiol. 2021, 43, 12–25. [Google Scholar] [CrossRef]
- Hayward, C.; Ross, K.E.; Brown, M.H.; Whiley, H. Water as a source of antimicrobial resistance and healthcare-associated infections. Pathogens 2020, 9, 667. [Google Scholar] [CrossRef]
- Deshmukh, R.A.; Joshi, K.; Bhand, S.; Roy, U. Recent developments in detection and enumeration of waterborne bacteria: A retrospective minireview. MicrobiologyOpen 2016, 5, 901–922. [Google Scholar] [CrossRef] [Green Version]
- Cervia, J.S.; Ortolano, G.A.; Canonica, F.P. Hospital tap water: A reservoir of risk for health care-associated infection. Infect. Dis. Clin. Pract. 2008, 16, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, H.; Weber, D.J.; Rutala, W.A. Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin. Infect. Dis. 2016, 62, 1423–1435. [Google Scholar] [CrossRef]
- Soto-Giron, M.J.; Rodriguez-R, L.M.; Luo, C.W.; Elk, M.; Ryu, H.; Hoelle, J.; Domingo, J.W.S.; Konstantinidis, K.T. Biofilms on hospital shower hoses: Characterization and implications for nosocomial infections. Appl. Environ. Microbiol. 2016, 82, 2872–2883. [Google Scholar] [CrossRef] [Green Version]
- Anaissie, E.J.; Penzak, S.R.; Dignani, M.C. The hospital water supply as a source of nosocomial infections: A plea for action. Arch. Intern. Med. 2002, 162, 1483–1492. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Gattlen, J.; Amberg, C.; Zinn, M.; Mauclaire, L. Biofilms isolated from washing machines from three continents and their tolerance to a standard detergent. Biofouling 2010, 26, 873–882. [Google Scholar] [CrossRef]
- Oxford, J.; Berezin, E.N.; Courvalin, P.; Dwyer, D.; Exner, M.; Jana, L.A.; Kaku, M.; Lee, C.; Letlape, K.; Low, D.E.; et al. An international survey of bacterial contamination and householders’ knowledge, attitudes and perceptions of hygiene. J. Infect. Prev. 2013, 14, 132–138. [Google Scholar] [CrossRef]
- Ristola, M.; Arbeit, R.D.; Von Reyn, C.F.; Horsburgh, C.R. Isolation of Mycobacterium avium from potable water in homes and institutions of patients with HIV infection in Finland and the United States. BioMed Res. Int. 2015, 2015, 713845. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, A.A.; Pukuma, M.S.; Abdulazeez, F.B. Frequency of biofilm formation in toothbrushes and wash basin junks. Ann. Trop. Med. Public Health 2013, 6, 55–58. [Google Scholar] [CrossRef]
- Ahmadrajabi, R.; Shakibaie, M.R.; Iranmanesh, Z.; Mollaei, H.R.; Sobhanipoor, M.H. Prevalence of mip virulence gene and PCR-base sequence typing of Legionella pneumophila from cooling water systems of two cities in Iran. Virulence 2016, 7, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Barna, Z.; Kadar, M.; Kalman, E.; Szax, A.S.; Vargha, M. Prevalence of Legionella in premise plumbing in Hungary. Water Res. 2016, 90, 71–78. [Google Scholar] [CrossRef]
- Donohue, M.J.; King, D.; Pfaller, S.; Mistry, J.H. The sporadic nature of Legionella pneumophila, Legionella pneumophila Sg1 and Mycobacterium avium occurrence within residences and office buildings across 36 states in the United States. J. Appl. Microbiol. 2019, 126, 1568–1579. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Oana, K.; Kawakami, Y. Bath water contamination with Legionella and nontuberculous mycobacteria in 24-hour home baths, hot springs, and public bathhouses of nagano prefecture, Japan. Jpn. J. Infect. Dis. 2014, 67, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Mathias, A.J.; Sumitha, B.; Deepa, K.V.; Ramya, C.; Deepashree, G.H.M.; Smitha. Bacterial contamination of drinking water supplies to residential and workplaces of Bangalore. Ecol. Environ. Conserv. 2007, 13, 123–128. [Google Scholar]
- Prevost, M.; Rompre, A.; Baribeau, H.; Coallier, J.; Lafrance, P. Service lines: Their effect on microbiological quality. J. Am. Water Work. Assoc. 1997, 89, 78–91. [Google Scholar] [CrossRef]
- Rakić, A.; Perić, J.; Štambuk-Giljanović, N.; Mikrut, A.; Bakavić, A.S. Legionella species in year-round vs. seasonal accommodation water supply systems. Arch. Ind. Hyg. Toxicol. 2011, 62, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Sanden, G.N.; Morrill, W.E.; Fields, B.S.; Breiman, R.F.; Barbaree, J.M. Incubation of water samples containing amoebae improves detection of Legionellae by the culture method. Appl. Environ. Microbiol. 1992, 58, 2001–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, C.L.; Owen, R.J.; Said, B.; Lai, S.; Lee, J.V.; Surman-Lee, S.; Nichols, G. Detection of Helicobacter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in England. J. Appl. Microbiol. 2004, 97, 690–698. [Google Scholar] [CrossRef]
- Briancesco, R.; Semproni, M.; Paradiso, R.; Bonadonna, L. Nontuberculous mycobacteria: An emerging risk in engineered environmental habitats. Ann. Microbiol. 2014, 64, 735–740. [Google Scholar] [CrossRef]
- Abdel Haleem, A.A.; Hemida, S.K.; Abdellatif, M.M. Evaluation of microorganisms of drinking water of Rafha City, northern borders, Saudi Arabia. J. Pure Appl. Microbiol. 2016, 10, 61–71. [Google Scholar] [CrossRef]
- Dai, D.J.; Rhoads, W.J.; Katner, A.; Strom, L.; Edwards, M.A.; Pruden, A.; Pieper, K.J. Molecular survey of Legionella and Naegleria fowleri in private well water and premise plumbing following the 2016 Louisiana flood. Environ. Sci.-Water Res. Technol. 2019, 5, 1464–1477. [Google Scholar] [CrossRef]
- Hultén, K.; Enroth, H.; Nyström, T.; Engstrand, L. Presence of Helicobacter species DNA in Swedish water. J. Appl. Microbiol. 1998, 85, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.J.; Parrish, N.M.; Belani, A.; Shah, M. Recurrent Aeromonas bacteremia due to contaminated well water. Open Forum Infect. Dis. 2015, 2, ofv142. [Google Scholar] [CrossRef] [Green Version]
- Mapili, K.; Pieper, K.J.; Dai, D.; Pruden, A.; Edwards, M.A.; Tang, M.; Rhoads, W.J. Legionella pneumophila occurrence in drinking water supplied by private wells. Lett. Appl. Microbiol. 2020, 70, 232–240. [Google Scholar] [CrossRef]
- Mukhopadhyay, C.; Vishwanath, S.; Eshwara, V.K.; Shankaranarayana, S.A.; Sagir, A. Microbial quality of well water from rural and urban households in Karnataka, India: A cross-sectional study. J. Infect. Public Health 2012, 5, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Oluyege, J.O.; Koko, A.E.; Aregbesola, O.A. Bacteriological and physico-chemical quality assessment of household drinking water in Ado-Ekiti, Nigeria. Water Sci. Technol. Water Supply 2011, 11, 79–84. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, B.W.; Lamori, J.; Shah, K.; Zabaleta, J.; Garai, J.; Taylor, C.M.; Sherchan, S.P. Molecular detection of opportunistic pathogens and insights into microbial diversity in private well water and premise plumbing. J. Water Health 2020, 18, 820–834. [Google Scholar] [CrossRef]
- Laverdière, M.; Joly, J.R.; Habel, F.; Bernier, F.; Riendeau, G.A.; DeCarolis, E. A sporadic community-acquired legionnaires disease linked to a domestic hot water supply: Report of a documented case. Infect. Dis. Clin. Pract. 2001, 10, 441–443. [Google Scholar] [CrossRef]
- Abera, B.; Kibret, M.; Goshu, G.; Yimer, M. Bacterial quality of drinking water sources and antimicrobial resistance profile of Enterobacteriaceae in Bahir Dar city, Ethiopia. J. Water Sanit. Hyg. Dev. 2014, 4, 384–390. [Google Scholar] [CrossRef]
- Adday, A.O.; Althahab, A.; Alwash, M.S. Assessment of the antibiotic susceptibility and minimum inhibition concentration of Legionella pneumophila isolated from different sources in Babylon Province. Plant Arch. 2019, 19, 1107–1110. [Google Scholar] [CrossRef]
- Koksal, F.; Oguzkurt, N.; Samasti, M.; Altas, K. Prevalence and antimicrobial resistance patterns of Aeromonas strains isolated from drinking water samples in Istanbul, Turkey. Chemotherapy 2007, 53, 30–35. [Google Scholar] [CrossRef]
- Mombini, S.; Rezatofighi, S.E.; Kiyani, L.; Motamedi, H. Diversity and metallo-β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. J. Environ. Manag. 2019, 231, 413–418. [Google Scholar] [CrossRef]
- Obi, C.L.; Ramalivhana, J.; Momba, M.N.B.; Onabolu, B.; Igumbor, J.O.; Lukoto, M.; Mulaudzi, T.B.; Bessong, P.O.; Jansen Van Rensburg, E.L.; Green, E.; et al. Antibiotic resistance profiles and relatedness of enteric bacterial pathogens isolated from HIV/AIDS patients with and without diarrhoea and their household drinking water in rural communities in Limpopo Province South Africa. Afr. J. Biotechnol. 2007, 6, 1035–1047. [Google Scholar]
- Schiavano, G.F.; Carloni, E.; Andreoni, F.; Magi, S.; Chironna, M.; Brandi, G.; Amagliani, G. Prevalence and antibiotic resistance of Pseudomonas aeruginosa in water samples in central Italy and molecular characterization of oprD in imipenem resistant isolates. PLoS ONE 2017, 12, e0189172. [Google Scholar] [CrossRef] [Green Version]
- Samie, A.; Mashao, M.B.; Bessong, P.O.; Nkgau, T.F.; Momba, M.N.B.; Obi, C.L. Diversity and antibiograms of bacterial organisms isolated from samples of household drinking-water consumed by HIV-positive individuals in rural settings, South Africa. J. Health Popul. Nutr. 2012, 30, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Zupančič, J.; Turk, M.; Črnigoj, M.; Ambrožič Avguštin, J.; Gunde-Cimerman, N. The dishwasher rubber seal acts as a reservoir of bacteria in the home environment. BMC Microbiol. 2019, 19, 300. [Google Scholar] [CrossRef] [Green Version]
- Lucassen, R.; Rehberg, L.; Heyden, M.; Bockmuhl, D. Strong correlation of total phenotypic resistance of samples from household environments and the prevalence of class 1 integrons suggests for the use of the relative prevalence of intI1 as a screening tool for multi-resistance. PLoS ONE 2019, 14, e0218277. [Google Scholar] [CrossRef]
- Maki, A.A. A study of bacterial contamination in different places in house kitchens. Pollut. Res. 2019, 38, 862–869. [Google Scholar]
- Ma, L.P.; Li, B.; Zhang, T. New insights into antibiotic resistome in drinking water and management perspectives: A metagenomic based study of small-sized microbes. Water Res. 2019, 152, 191–201. [Google Scholar] [CrossRef]
- Schages, L.; Lucassen, R.; Wichern, F.; Kalscheuer, R.; Bockmuhl, D. The household resistome: Frequency of beta-Lactamases, class 1 integrons, and antibiotic-resistant bacteria in the domestic environment and their reduction during automated dishwashing and laundering. Appl. Environ. Microbiol. 2020, 86, 2020–2062. [Google Scholar] [CrossRef]
- Alavandi, S.V.; Subashini, M.S.; Ananthan, S. Occurrence of haemolytic and cytotoxic Aeromonas species in domestic water supplies in Chennai. Indian J. Med. Res. 1999, 110, 50–55. [Google Scholar]
- Huminer, D.; Shmuely, H.; Block, C.; Pitlik, S.D. Home shower-bath Pseudomonas folliculitis. Isr. J. Med. Sci. 1989, 25, 44–45. [Google Scholar]
- Watando, A.; Toyota, E.; Mori, N.; Kaneko, A.; Kuratsuji, T.; Kirikae, T.; Kudo, K. Pulmonary Mycobacterium avium infection in an immunocompetent young adult related to use of home bath with a circulating water system. Jpn. J. Infect. Dis. 2001, 54, 151–152. [Google Scholar]
- Botsaris, G.; Kanetis, L.; Slaný, M.; Parpouna, C.; Makris, K.C. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus). Environ. Monit. Assess. 2015, 187, 4957–4959. [Google Scholar] [CrossRef] [PubMed]
- Gora, S.L.; Soucie, T.A.; McCormick, N.E.; Ontiveros, C.C.; L’Herault, V.; Gavin, M.; Trueman, B.F.; Campbell, J.; Stoddart, A.K.; Gagnon, G.A. Microbiological water quality in a decentralized Arctic drinking water system. Environ. Sci.-Water Res. Technol. 2020, 6, 1855–1868. [Google Scholar] [CrossRef]
- Huerta, M.; Castel, H.; Grotto, I.; Shpilberg, O.; Alkan, M.; Harman-Boehm, I. Clinical and epidemiologic investigation of two Legionella-Rickettsia co-infections. Isr. Med. Assoc. J. 2003, 5, 560–563. [Google Scholar] [PubMed]
- Payment, P. Bacterial colonization of domestic reverse-osmosis water filtration units. Can. J. Microbiol. 1989, 35, 1065–1067. [Google Scholar] [CrossRef]
- Bullin, C.H.; Tanner, E.I.; Collins, C.H. Isolation of Mycobacterium xenopei from water taps. J. Hyg. 1970, 68, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Kaustova, J.; Charvat, B.; Mudra, R.; Holendova, E. Ostrava—A new endemic focus of Mycobacteria xenopi in the Czech Republic. Cent. Eur. J. Public Health 1993, 1, 35–37. [Google Scholar]
- Marciano-Cabral, F.; Jamerson, M.; Kaneshiro, E.S. Free-living amoebae, Legionella and Mycobacterium in tap water supplied by a municipal drinking water utility in the USA. J. Water Health 2010, 8, 71–82. [Google Scholar] [CrossRef]
- Parashar, D.; Das, R.; Chauhan, D.S.; Sharma, V.D.; Lavania, M.; Yadav, V.S.; Chauhan, S.V.S.; Katoch, V.M. Identification of environmental mycobacteria isolated from Agra, north India by conventional & molecular approaches. Indian J. Med. Res. 2009, 129, 424–431. [Google Scholar]
- Perez-Martinez, I.; Aguilar-Ayala, D.A.; Fernandez-Rendon, E.; Carrillo-Sanchez, A.K.; Helguera-Repetto, A.C.; Rivera-Gutierrez, S.; Estrada-Garcia, T.; Cerna-Cortes, J.F.; Gonzalez-Y-Merchand, J.A. Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water: A pilot study. BMC Res. Notes 2013, 6, 531. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.; Müller, C.; Rüsch-Gerdes, S.; Seidel, C.; Göbel, U.; Pohle, H.D.; Ruf, B. Isolation of atypical mycobacteria from tap water in hospitals and homes: Is this a possible source of disseminated MAC infection in AIDS patients? J. Infect. 1995, 31, 39–44. [Google Scholar] [CrossRef]
- Slosarek, M.; Kubin, M.; Pokorny, J. Water is a possible factor of transmission in mycobacterial infections. Cent. Eur. J. Public Health 1994, 2, 103–105. [Google Scholar]
- Slosarek, M.; Kubin, M.; Jaresova, M. Water-borne household infections due to Mycobacterium xenopi. Cent. Eur. J. Public Health 1993, 1, 78–80. [Google Scholar]
- Klanicova, B.; Seda, J.; Slana, I.; Slany, M.; Pavlik, I. The tracing of Mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs. Curr. Microbiol. 2013, 67, 725–731. [Google Scholar] [CrossRef]
- Falkinham, J.F., III; Williams, M.D.; Kwait, R.; Lande, L. Methylobacterium spp. as an indicator for the presence or absence of Mycobacterium spp. Int. J. Mycobacteriol. 2016, 5, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, L.; Huang, T.; Liu, X.; Miao, Y.; Liu, K.; Qian, X. Indoor heating triggers bacterial ecological links with tap water stagnation during winter: Novel insights into bacterial abundance, community metabolic activity and interactions. Environ. Pollut. 2021, 269, 116094. [Google Scholar] [CrossRef]
- Mulchandani, R.; Nilsson, H.O.; Wadstrom, T.; Joshi, B.R. Presence of Helicobacter pylori in Mumbai water. J. Pure Appl. Microbiol. 2013, 7, 2315–2324. [Google Scholar]
- Richards, C.L.; Broadaway, S.C.; Eggers, M.J.; Doyle, J.; Pyle, B.H.; Camper, A.K.; Ford, T.E. Detection of pathogenic and non-pathogenic bacteria in drinking water and associated biofilms on the crow reservation, Montana, USA. Microb. Ecol. 2018, 76, 52–63. [Google Scholar] [CrossRef]
- Al-Bahry, S.N.; Elshafie, A.E.; Victor, R.; Mahmoud, I.Y.; Al-Hinai, J.A. Opportunistic pathogens relative to physicochemical factors in water storage tanks. J. Water Health 2011, 9, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Boudouaya, H.A.; Melki, R.; Bouali, A.; Hamal, A.; Boukhatem, N. Prevalence of Legionella species in hot water of Moorish baths “Hammams” and domestic bathrooms in Oujda city, Morocco. J. Mater. Environ. Sci. 2017, 8, 1567–1573. [Google Scholar]
- Byrne, B.G.; McColm, S.; McElmurry, S.P.; Kilgore, P.E.; Sobeck, J.; Sadler, R.; Love, N.G.; Swanson, M.S. Prevalence of infection-competent serogroup 6 Legionella pneumophila within premise plumbing in southeast Michigan. mBio 2018, 9, e00016–e00018. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.; Stevenson, D.; Bennett, A.; Walker, J. Occurrence of Legionella in UK household showers. Int. J. Hyg. Environ. Health 2017, 220, 401–406. [Google Scholar] [CrossRef]
- Rakić, A.; Perić, J.; Foglar, L. Influence of temperature, chlorine residual and heavy metals on the presence of Legionella pneumophila in hot water distribution systems. Ann. Agric. Environ. Med. 2012, 19, 431–436. [Google Scholar] [PubMed]
- Rakić, A.; Štambuk-Giljanović, N.; Foglar, L. Monitoring Legionella pneumophila in drinking water distribution systems in Southern Croatia. Fresenius Environ. Bull. 2013, 22, 3390–3397. [Google Scholar]
- Rakic, A.; Jurcev-Savicevic, A.; Stambuk-Giljanovic, N. The assessment of the risk factors on Legionella spp. presence in public supply water in permanently vs. seasonally open facilities. Fresenius Environ. Bull. 2017, 26, 7353–7361. [Google Scholar]
- Scaturro, M.; Fontana, S.; Crippa, S.; Caporali, M.G.; Seyler, T.; Veschetti, E.; Villa, G.; Rota, M.C.; Ricci, M.L. An unusually long-lasting outbreak of community-acquired Legionnaires’ disease, 2005-2008, Italy. Epidemiol. Infect. 2015, 143, 2416–2425. [Google Scholar] [CrossRef] [Green Version]
- Simmons, G.; Jury, S.; Thornley, C.; Harte, D.; Mohiuddin, J.; Taylor, M. A Legionnaires’ disease outbreak: A water blaster and roof-collected rainwater systems. Water Res. 2008, 42, 1449–1458. [Google Scholar] [CrossRef]
- Totaro, M.; Costa, A.L.; Frendo, L.; Profeti, S.; Casini, B.; Gallo, A.; Privitera, G.; Baggiani, A. Evaluation of Legionella spp. colonization in residential buildings having solar thermal system for hot water production. Int. J. Environ. Res. Public Health 2020, 17, 7050. [Google Scholar] [CrossRef]
- Totaro, M.; Valentini, P.; Costa, A.L.; Frendo, L.; Cappello, A.; Casini, B.; Miccoli, M.; Privitera, G.; Baggiani, A. Presence of Legionella spp. in hot water networks of different Italian residential buildings: A three-year survey. Int. J. Environ. Res. Public Health 2017, 14, 1296. [Google Scholar] [CrossRef] [Green Version]
- Pastoris, M.C.; Viganò, E.F.; Passi, C. A family cluster of Legionella pneumophila infections. Scand. J. Infect. Dis. 1988, 20, 489–493. [Google Scholar] [CrossRef]
- Ventura, R.J.; Muhi, E.; de los Reyes, V.C.; Sucaldito, M.N.; Tayag, E. A community-based gastroenteritis outbreak after Typhoon Haiyan, Leyte, Philippines, 2013. West. Pac. Surveill. Response J. WPSAR 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Peter, A.; Routledge, E. Present-day monitoring underestimates the risk of exposure to pathogenic bacteria from cold water storage tanks. PLoS ONE 2018, 13, e0195635. [Google Scholar] [CrossRef]
- Hayes-Phillips, D.; Bentham, R.; Ross, K.; Whiley, H. Factors influencing legionella contamination of domestic household showers. Pathogens 2019, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziwa, M.; Jovic, G.; Ngwisha, C.L.T.; Molnar, J.A.; Kwenda, G.; Samutela, M.; Mulowa, M.; Kalumbi, M.M. Common hydrotherapy practices and the prevalence of burn wound bacterial colonisation at the University Teaching Hospital in Lusaka, Zambia. Burns 2019, 45, 983–989. [Google Scholar] [CrossRef]
- French, G.L.; Otter, J.A.; Shannon, K.P.; Adams, N.M.T.; Watling, D.; Parks, M.J. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): A comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J. Hosp. Infect. 2004, 57, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J.D.; Tanner, B.D.; Maxwell, S.L.; Gerba, C.P. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system. Am. J. Infect. Control 2011, 39, 655–662. [Google Scholar] [CrossRef]
- Kim, B.-R.; Bae, Y.-M.; Lee, S.-Y. Effect of environmental conditions on biofilm formation and related characteristics of Staphylococcus aureus. J. Food Saf. 2016, 36, 412–422. [Google Scholar] [CrossRef]
- Neopane, P.; Nepal, H.P.; Shrestha, R.; Uehara, O.; Abiko, Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 2018, 11, 25–32. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Alonso-Calleja, C.; Riesco-Peláez, F.; Capita, R. Effect of sub-inhibitory concentrations of biocides on the architecture and viability of MRSA biofilms. Food Microbiol. 2017, 65, 294–301. [Google Scholar] [CrossRef]
- Speck, S.; Wenke, C.; Feßler, A.T.; Kacza, J.; Geber, F.; Scholtzek, A.D.; Hanke, D.; Eichhorn, I.; Schwarz, S.; Rosolowski, M.; et al. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon 2020, 6, e04070. [Google Scholar] [CrossRef]
- Diaper, J.P.; Edwards, C. Survival of Staphylococcus aureus in lakewater monitored by flow cytometry. Microbiology 1994, 140, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Watson Sean, P.; Clements Mark, O.; Foster Simon, J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 1998, 180, 1750–1758. [Google Scholar] [CrossRef] [Green Version]
- Huws, S.A.; Smith, A.W.; Enright, M.C.; Wood, P.J.; Brown, M.R. Amoebae promote persistence of epidemic strains of MRSA. Environ. Microbiol. 2006, 8, 1130–1133. [Google Scholar] [CrossRef]
- Settanni, L.; Gaglio, R.; Stucchi, C.; De Martino, S.; Francesca, N.; Moschetti, G. Presence of pathogenic bacteria in ice cubes and evaluation of their survival in different systems. Ann. Microbiol. 2017, 67, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef] [PubMed]
- Summerscales, I.M.; McBean, E.A. Incorporation of the Multiple Barrier Approach in drinking water risk assessment tools. J. Water Health 2010, 9, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Biological stability of drinking water: Controlling factors, methods, and challenges. Front. Microbiol. 2016, 7, 45. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Liu, T.; Kong, W.; He, X.; Jin, Y.; Zhang, B. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. PLoS ONE 2015, 10, e0128825. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Gunawan, C.; Barraud, N.; Rice, S.A.; Harry, E.J.; Amal, R. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ. Sci. Technol. 2016, 50, 8954–8976. [Google Scholar] [CrossRef]
- WHO. A Global Overview of National Regulations and Standards for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2018.
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum, 4th ed.; World Health Organization: Geneva, Switzerland, 2017.
- Schwake, D.O.; Garner, E.; Strom, O.R.; Pruden, A.; Edwards, M.A. Legionella DNA Markers in Tap Water Coincident with a Spike in Legionnaires’ Disease in Flint, MI. Environ. Sci. Technol. Lett. 2016, 3, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Skogberg, K.; Nuorti, J.P.; Saxen, H.; Kusnetsov, J.; Mentula, S.; Fellman, V.; Maki-Petays, N.; Jousimies-Somer, H. A newborn with domestically acquired Legionnaires disease confirmed by molecular typing. Clin. Infect. Dis. 2002, 35, E82–E85. [Google Scholar] [CrossRef]
- Bates, M.N.; Maas, E.; Martin, T.; Harte, D.; Grubner, M.; Margolin, T. Investigation of the prevalence of Legionella species in domestic hot water systems. N. Z. Med. J. 2000, 113, 218–220. [Google Scholar]
- Martinelli, F.; Caruso, A.; Moschini, L.; Turano, A.; Scarcella, C.; Speziani, F. A comparison of Legionella pneumophila occurrence in hot water tanks and instantaneous devices in domestic, nosocomial, and community environments. Curr. Microbiol. 2000, 41, 374–376. [Google Scholar] [CrossRef]
- Bielefeldt, A.R.; Kowalski, K.; Summers, R.S. Bacterial treatment effectiveness of point-of-use ceramic water filters. Water Res. 2009, 43, 3559–3565. [Google Scholar] [CrossRef]
- Wu, J.; Cao, M.; Tong, D.; Finkelstein, Z.; Hoek, E.M.V. A critical review of point-of-use drinking water treatment in the United States. NPJ Clean Water 2021, 4, 40. [Google Scholar] [CrossRef]
- Mathys, W.; Stanke, J.; Harmuth, M.; Junge-Mathys, E. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. Int. J. Hyg. Environ. Health 2008, 211, 179–185. [Google Scholar] [CrossRef]
- Barna, Z.; Antmann, K.; Pászti, J.; Bánfi, R.; Kádár, M.; Szax, A.; Németh, M.; Szegő, E.; Vargha, M. Infection control by point-of-use water filtration in an intensive care unit—A Hungarian case study. J. Water Health 2014, 12, 858–867. [Google Scholar] [CrossRef]
- Verhougstraete, M.; Reynolds, K.A.; Pearce-Walker, J.; Gerba, C. Cost-benefit analysis of point-of-use devices for health risks reduction from pathogens in drinking water. J. Water Health 2020, 18, 968–982. [Google Scholar] [CrossRef]
- Chaidez, C.; Gerba, C.P. Comparison of the microbiologic quality of point-of-use (POU)-treated water and tap water. Int. J. Environ. Health Res. 2004, 14, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Josephson, K.L.; Rubino, J.R.; Pepper, I.L. Characterization and quantification of bacterial pathogens and indicator organisms in household kitchens with and without the use of a disinfectant cleaner J. Appl. Microbiol. 1997, 83, 737–750. [Google Scholar] [CrossRef]
- Hollyoak, V.; Boyd, P.; Freeman, R. Whirlpool baths in nursing homes: Use, maintenance, and contamination with Pseudomonas aeruginosa. Commun. Dis. Rep. CDR Rev. 1995, 5, R102–R104. [Google Scholar]
- CDC. DC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services: Washington, DC, USA, 2019.
- Nriagu, J.; Xi, C.; Siddique, A.; Vincent, A.; Shomar, B. Influence of household water filters on bacteria growth and trace metals in tap water of Doha, Qatar. Sci. Rep. 2018, 8, 8268. [Google Scholar] [CrossRef] [PubMed]
- Von Baum, H.; Bommer, M.; Forke, A.; Holz, J.; Frenz, P.; Wellinghausen, N. Is domestic tap water a risk for infections in neutropenic patients? Infection 2010, 38, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.; Carter, R.; Gilpin, C.; Coulter, C.; Hargreaves, M. Comparison of methods for processing drinking water samples for the isolation of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 2008, 74, 3094–3098. [Google Scholar] [CrossRef] [Green Version]
- Whiley, H. Legionella risk management and control in potable water systems: Argument for the abolishment of routine testing. Int. J. Environ. Res. Public Health 2016, 14, 12. [Google Scholar] [CrossRef] [Green Version]
- Shih, H.-Y.; Lin, Y.E. Caution on interpretation of Legionella results obtained using real-time PCR for environmental water samples. Appl. Environ. Microbiol. 2006, 72, 6859. [Google Scholar] [CrossRef] [Green Version]
- Marshall, H.M.; Carter, R.; Torbey, M.J.; Minion, S.; Tolson, C.; Sidjabat, H.E.; Huygens, F.; Hargreaves, M.; Thomson, R.M. Mycobacterium lentiflavum in drinking water supplies, Australia. Emerg. Infect. Dis. 2011, 17, 395–402. [Google Scholar] [CrossRef]
- Prévost, M.; Rompré, A.; Coallier, J.; Servais, P.; Laurent, P.; Clément, B.; Lafrance, P. Suspended bacterial biomass and activity in full-scale drinking water distribution systems: Impact of water treatment. Water Res. 1998, 32, 1393–1406. [Google Scholar] [CrossRef]
- Gibbs, R.A.; Hayes, C.R. The use of R2A medium and the spread plate method for the enumeration of heterotrophic bacteria in drinking water. Lett. Appl. Microbiol. 2008, 6, 19–21. [Google Scholar] [CrossRef]
- ISO 16266-2:2018; Water Quality—Detection and Enumeration of Pseudomonas aeruginosa—Part 2: Most Probable Number Method. International Organization of Standardization: Rome, Italy, 2017; Volume 166266-2:2018.
- ISO 11731:2017(en); Water Quality—Enumeration of Legionella. International Organization of Standardization: Rome, Italy, 2017; Volume 11731:2017.
- Pellizari, V.H.; Martins, M.T. Occurrence of Legionella sp in water samples from man-made systems of Sao Paulo Brazil. Rev. Microbiol. 1995, 26, 186–191. [Google Scholar]
- Benowitz, I.; Fitzhenry, R.; Dickinson, M.; Levy, M.; Lin, Y.; Nazarian, E.; Ostrowsky, B.; Passaretti, T.; Rakeman, J.; Saylors, A.; et al. Rapid identification of a cooling tower-associated Legionnaires’ disease outbreak supported by polymerase chain reaction testing of environmental samples, New York City, 2014–2015. J. Environ. Health 2018, 80, 8–12. [Google Scholar]
- Dey, R.; Mount, H.; Ensminger, A.W.; Tyrrell, G.J.; Ward, L.P.; Ashbolt, N.J. Isolation of Legionella pneumophila by co-culture with Local Ameba, Canada. Emerg. Infect. Dis. 2019, 25, 2104–2107. [Google Scholar] [CrossRef]
- Cangelosi, G.A.; Meschke, J.S. Dead or alive: Molecular assessment of microbial viability. Appl. Environ. Microbiol. 2014, 80, 5884–5891. [Google Scholar] [CrossRef] [Green Version]
- Golpayegani, A.; Douraghi, M.; Rezaei, F.; Alimohammadi, M.; Nodehi, R.N. Propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools. J Environ. Health Sci. Eng. 2019, 17, 407–416. [Google Scholar] [CrossRef]
- Tossa, P.; Deloge-Abarkan, M.; Zmirou-Navier, D.; Hartemann, P.; Mathieu, L. Pontiac fever: An operational definition for epidemiological studies. BMC Public Health 2006, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, S.; Trebesius, K.; Heesemann, J. Evaluation of detection of Legionella spp. in water samples by fluorescence in situ hybridization, PCR amplification and bacterial culture. Int. J. Med. Microbiol. 2002, 292, 241–245. [Google Scholar] [CrossRef]
- Frickmann, H.; Zautner, A.E.; Moter, A.; Kikhney, J.; Hagen, R.M.; Stender, H.; Poppert, S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review. Crit. Rev. Microbiol. 2017, 43, 263–293. [Google Scholar] [CrossRef]
- EPA U.S. Safe Drinking Water Act; EPA: Washington, DC, USA, 1996; Volume 300f.
- The Council of the European Union. Drinking Water Directive 2020/2184; European Union: Brussels, Belgium, 2020.
- Wen, X.; Chen, F.; Lin, Y.; Zhu, H.; Yuan, F.; Kuang, D.; Jia, Z.; Yuan, Z. Microbial indicators and their use for monitoring drinking water quality—A review. Sustainability 2020, 12, 2249. [Google Scholar] [CrossRef] [Green Version]
- Parr, A.; Whitney, E.A.; Berkelman, R.L. Legionellosis on the rise: A review of guidelines for prevention in the United States. J. Public Health Manag. Pract. 2015, 21, E17–E26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlieg, W.L.; Fanoy, E.B.; van Asten, L.; Liu, X.; Yang, J.; Pilot, E.; Bijkerk, P.; van der Hoek, W.; Krafft, T.; van der Sande, M.A.; et al. Comparing national infectious disease surveillance systems: China and the Netherlands. BMC Public Health 2017, 17, 415. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Jiang, S.C. A dose response model for quantifying the infection risk of antibiotic-resistant bacteria. Sci. Rep. 2019, 9, 17093. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, H.; Arslan, H. Domestically acquired legionnaires’ disease: Two case reports and a review of the pertinent literature. Balk. Med. J. 2016, 33, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Falkinham Iii, J.O.; Iseman, M.D.; de Haas, P.; van Soolingen, D. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 2008, 6, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Leverstein van Hall, M.A.; Verbon, A.; Huisman, M.V.; Kuijper, E.J.; Dankert, J. Reinfection with Legionella pneumophila documented by pulsed-field gel electrophoresis. Clin. Infect. Dis. 1994, 19, 1147–1149. [Google Scholar] [CrossRef]
- Lück, P.C.; Leupold, I.; Hlawitschka, M.; Helbig, J.H.; Carmienke, I.; Jatzwauk, L.; Guderitz, T. Prevalence of Legionella species, serogroups, and monoclonal subgroups in hot water systems in south-eastern Germany. Zent. Für Hyg. Und Umweltmed. = Int. J. Hyg. Environ. Med. 1993, 193, 450–460. [Google Scholar]
- Moran-Gilad, J.; Lazarovitch, T.; Mentasti, M.; Harrison, T.; Weinberger, M.; Mordish, Y.; Mor, Z.; Stocki, T.; Anis, E.; Sadik, C.; et al. Humidifier-associated paediatric Legionnaires’ disease, Israel, February 2012. Eurosurveillance 2012, 17, 2–5. [Google Scholar] [CrossRef]
- Ryu, S.; Yang, K.; Chun, B.C. Community-acquired Legionnaires’ disease in a newly constructed apartment building. J. Prev. Med. Public Health 2017, 50, 274–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sax, H.; Dharan, S.; Pittet, D. Legionnaires’ disease in a renal transplant recipient: Nosocomial or home-grown? Transplantation 2002, 74, 890–892. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, A.; Kocharian, A.; Koch, A.; Marx, J. Fatal case of Legionnaires’ disease after home exposure to Legionella pneumophila serogroup 3—Wisconsin, 2018. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.E.; Li, V.L.; Muraca, P. Legionnaires’ disease acquired within the homes of two patients: Link to the home water supply. JAMA J. Am. Med. Assoc. 1987, 257, 1215–1217. [Google Scholar] [CrossRef]
- Stout, J.E.; Yu, V.L.; Muraca, P.; Joly, J.; Troup, N.; Tompkins, L.S. Potable water as a cause of sporadic cases of community-acquired legionnaires’ disease. N. Engl. J. Med. 1992, 326, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Young, M.; Smith, H.; Gray, B.; Huang, B.; Barten, J.; Towner, C.; Plowman, S.; Afshar, B.; Fry, N.; Blair, B.; et al. The public health implications of a sporadic case of culture-proven Legionnaires’ disease. Aust. N. Z. J. Public Health 2005, 29, 513–517. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Hamilton, M.T.; Johnson, W.; Jjemba, P.; Bukhari, Z.; LeChevallier, M.; Haas, C.N.; Gurian, P.L. Risk-based critical concentrations of Legionella pneumophila for indoor residential water uses. Environ. Sci. Technol. 2019, 53, 4528–4541. [Google Scholar] [CrossRef] [Green Version]
- Dean, K.; Mitchell, J. A dose response model for the inhalation route of exposure to P. aeruginosa. Microb. Risk Anal. 2020, 15, 100115. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Weir, M.H.; Haas, C.N. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Res. 2017, 109, 310–326. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Australian Guidelines for the Prevention and Control of Infection in Healthcare; National Health and Medical Research Council: Canberra, Australia, 2019.
- CDC. 2020 National and State Healthcare-Associated Infections Progress Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Zietz, B.; Wiese, J.; Brengelmann, F.; Dunkelberg, H. Presence of Legionellaceae in warm water supplies and typing of strains by polymerase chain reaction. Epidemiol. Infect. 2001, 126, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Liu, R.; Cao, N.; Yu, J.; Liu, X.; Yu, Z. Mycobacterial metabolic characteristics in a water meter biofilm revealed by metagenomics and metatranscriptomics. Water Res. 2019, 153, 315–323. [Google Scholar] [CrossRef]
- Yajko, D.M.; Chin, D.P.; Gonzalez, P.C.; Nassos, P.S.; Hopewell, P.C.; Reingold, A.L.; Horsburgh, C.R., Jr.; Yakrus, M.A.; Ostroff, S.M.; Hadley, W.K. Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995, 9, 176–182. [Google Scholar]
- Whitby, J.L.; Rampling, A. Pseudomonas aeruginosa contamination in domestic and hospital environments. Lancet 1972, 299, 15–17. [Google Scholar] [CrossRef]
- Wallet, F.; Emery, C.; Briand, E.; Cabanes, P.A. Prevalence of Legionella in domestic hot water systems in homes in France. Environ. Risques Sante 2016, 15, 29–38. [Google Scholar] [CrossRef]
- Wallace, R.J., Jr.; Iakhiaeva, E.; Williams, M.D.; Brown-Elliott, B.A.; Vasireddy, S.; Vasireddy, R.; Lande, L.; Peterson, D.D.; Sawicki, J.; Kwait, R.; et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J. Clin. Microbiol. 2013, 51, 1747–1752. [Google Scholar] [CrossRef] [Green Version]
- Vornhagen, J.; Stevens, M.; McCormick, D.W.; Dowd, S.E.; Eisenberg, J.N.S.; Boles, B.R.; Rickard, A.H. Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads. Biofouling 2013, 29, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Von Reyn, C.F.; Arbeit, R.D.; Horsburgh, C.R.; Ristola, M.A.; Waddell, R.D.; Tvaroha, S.M.; Samore, M.; Hirschhorn, L.R.; Lumio, J.; Lein, A.D.; et al. Sources of disseminated Mycobacterium avium infection in AIDS. J. Infect. 2002, 44, 166–170. [Google Scholar] [CrossRef]
- Verhoef, L.P.B.; Yzerman, E.P.F.; Bruin, J.P.; Den Boer, J.W. Domestic exposure to legionellae for Dutch Legionnaires’ disease patients. Arch. Environ. Health 2004, 59, 597–603. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Egas, C.; Nunes, O.C.; Manaia, C.M. Bacterial diversity from the source to the tap: A comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS Microbiol. Ecol. 2013, 83, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Van Ingen, J.; Blaak, H.; De Beer, J.; De Roda Husman, A.M.; Van Soolingen, D. Rapidly growing nontuberculous mycobacteria cultured from home tap and shower water. Appl. Environ. Microbiol. 2010, 76, 6017–6019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Assche, A.; Crauwels, S.; De Brabanter, J.; Willems, K.A.; Lievens, B. Characterization of the bacterial community composition in water of drinking water production and distribution systems in Flanders, Belgium. MicrobiologyOpen 2019, 8, e00726. [Google Scholar] [CrossRef] [PubMed]
- Tzou, C.L.; Dirac, M.A.; Becker, A.L.; Beck, N.K.; Weigel, K.M.; Meschke, J.S.; Cangelosi, G.A. Association between Mycobacterium avium complex pulmonary disease and mycobacteria in home water and soil a case-control study. Ann. Am. Thorac. Soc. 2020, 17, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Tomari, K.; Morino, S.; Horikoshi, Y. Case of infantile Legionella pneumonia after bathing in reheated and reused water. Pediatr. Infect. Dis. J. 2018, 37, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Tokajian, S.; Hashwa, F. Microbiological quality and genotypic speciation of heterotrophic bacteria isolated from potable water stored in household tanks. Water Qual. Res. J. Can. 2004, 39, 64–73. [Google Scholar] [CrossRef]
- Tichenor, W.S.; Thurlow, J.; McNulty, S.; Brown-Elliott, B.A.; Wallace, R.J., Jr.; Falkinham, J.O. Nontuberculous mycobacteria in household plumbing as possible cause of chronic rhinosinusitis. Emerg. Infect. Dis. 2012, 18, 1612–1617. [Google Scholar] [CrossRef]
- Thomson, R.; Tolson, C.; Carter, R.; Coulter, C.; Huygens, F.; Hargreaves, M. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol. 2013, 51, 3006–3011. [Google Scholar] [CrossRef] [Green Version]
- Takahara, M.; Kano, T.; Aiyoshi, M.; Fujino, T.; Otsuka, Y.; Saruta, K.; Kuratsuji, T.; Kirikae, T. Pulmonary Mycobacterium avium infection in an immunocompetent aged woman related to use of home bath with a circulating water system. Jpn. J. Infect. Dis. 2002, 55, 213–214. [Google Scholar]
- Straus, W.L.; Plouffe, J.F.; File, T.M.; Lipman, H.B.; Hackman, B.H.; Salstrom, S.J.; Benson, R.F.; Breiman, R.F.; Baird, I.; Emerick, J.; et al. Risk factors for domestic acquisition of Legionnaires disease. Arch. Intern. Med. 1996, 156, 1685–1692. [Google Scholar] [CrossRef]
- Stout, J.E.; Yu, V.L.; Yee, Y.C.; Vaccarello, S.; Diven, W.; Lee, T.C. Legionella pneumophila in residential water supplies: Environmental surveillance with clinical assessment for Legionnaires’ disease. Epidemiol. Infect. 1992, 109, 49–57. [Google Scholar]
- Stojek, N.M.; Dutkiewicz, J. Co-existence of Legionella and other Gram-negative bacteria in potable water from various rural and urban sources. Ann. Agric. Environ. Med. 2011, 18, 330–334. [Google Scholar]
- Stephens, F.R. Legionella in domestic hot water systems: Out of 40 samples drawn from hot water cylinders, two (5%) were found to be contaminated with Legionella which was significantly less than the 50–70% found in larger hot water systems. Build. Res. Inf. 1992, 20, 96–101. [Google Scholar] [CrossRef]
- Speirs, J.P.; Anderton, A.; Anderson, J.G. A study of the microbial content of the domestic kitchen. Int. J. Environ. Health Res. 1995, 5, 109–122. [Google Scholar] [CrossRef]
- Slade, P.J.; Falah, M.A.; Alghady, A.M.R. Isolation of Aeromonas hydrophila from bottled waters and domestic water-supplies in Saudi Arabia. J. Food Prot. 1986, 49, 471–476. [Google Scholar] [CrossRef]
- Silk, B.J.; Foltz, J.L.; Ngamsnga, K.; Brown, E.; Muñoz, M.G.; Hampton, L.M.; Jacobs-Slifka, K.; Kozak, N.A.; Underwood, J.M.; Krick, J.; et al. Legionnaires’ disease case-finding algorithm, attack rates, and risk factors during a residential outbreak among older adults: An environmental and cohort study. BMC Infect. Dis. 2013, 13, 291. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.; Duty, S.; McCue, K. A critical evaluation of methicillin-resistant Staphylococcus aureus and other bacteria of medical interest on commonly touched household surfaces in relation to household demographics. Am. J. Infect. Control 2009, 37, 447–453. [Google Scholar] [CrossRef]
- Scott, E.; Bloomfield, S.F. An investigation of microbial contamination in the home. J. Hyg. 1982, 89, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Robbecke, R.; Hartemann, P.; Fimmers, R.; Hagenau, C. Comparison of membrane filtration methods for the recovery of legionellae from naturally contaminated domestic drinking water supplies. Zent. Hyg. Umweltmed. 1999, 202, 51–59. [Google Scholar] [CrossRef]
- Schulze-Röbbecke, R.; Janning, B.; Fischeder, R. Occurrence of mycobacteria in biofilm samples. Tuber. Lung Dis. 1992, 73, 141–144. [Google Scholar] [CrossRef]
- Schelstraete, P.; Van Daele, S.; De Boeck, K.; Proesmans, M.; Lebecque, P.; Leclercq-Foucart, J.; Malfroot, A.; Vaneechoutte, M.; De Baets, F. Pseudomonas aeruginosa in the home environment of newly infected cystic fibrosis patients. Eur. Respir. J. 2008, 31, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, G.; Richardson, H.; Hermon-Taylor, J.; Weightman, A.; Higham, A.; Pickup, R. Mycobacterium avium subspecies paratuberculosis: Human exposure through environmental and domestic aerosols. Pathogens 2014, 3, 577–595. [Google Scholar] [CrossRef]
- Rhoads, W.J.; Bradley, T.N.; Mantha, A.; Buttling, L.; Keane, T.; Pruden, A.; Edwards, M.A. Residential water heater cleaning and occurrence of Legionella in Flint, MI. Water Res. 2020, 171, 115439. [Google Scholar] [CrossRef]
- Remold, S.K.; Brown, C.K.; Farris, J.E.; Hundley, T.C.; Perpich, J.A.; Purdy, M.E. Differential habitat use and niche partitioning by Pseudomonas species in human homes. Microb. Ecol. 2011, 62, 505–517. [Google Scholar] [CrossRef]
- Regnath, T.; Kreutzberger, M.; Illing, S.; Oehme, R.; Liesenfeld, O. Prevalence of Pseudomonas aeruginosa in households of patients with cystic fibrosis. Int. J. Hyg. Environ. Health 2004, 207, 585–588. [Google Scholar] [CrossRef]
- Ramalingam, B.; Sekar, R.; Boxall, J.B.; Biggs, C.A. Aggregation and biofilm formation of bacteria isolated from domestic drinking water. Water Sci. Technol. Water Supply 2013, 13, 1016–1023. [Google Scholar] [CrossRef]
- Raghupathi, P.K.; Zupančič, J.; Brejnrod, A.D.; Jacquiod, S.; Houf, K.; Burmølle, M.; Gunde-Cimerman, N.; Sørensen, S.J. Microbial diversity and putative opportunistic pathogens in dishwasher biofilm communities. Appl. Environ. Microbiol. 2018, 84, e02755-17. [Google Scholar] [CrossRef] [Green Version]
- Purdy-Gibson, M.E.; France, M.; Hundley, T.C.; Eid, N.; Remold, S.K. Pseudomonas aeruginosa in CF and non-CF homes is found predominantly in drains. J. Cyst. Fibros. 2015, 14, 341–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierre, D.; Baron, J.L.; Ma, X.; Sidari, F.P., III; Wagener, M.M.; Stout, J.E. Water quality as a predictor of Legionella positivity of building water systems. Pathogens 2019, 8, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieri, P.; Andra, S.S.; Charisiadis, P.; Demetriou, G.; Zambakides, N.; Makris, K.C. Variability of tap water residual chlorine and microbial counts at spatially resolved points of use. Environ. Eng. Sci. 2014, 31, 193–201. [Google Scholar] [CrossRef]
- Pastoris, M.C.; Piscina, A.; Zanasi, A.; Frisoni, M.N. Home Legionella infection: A case report. IRCS Med. Sci. 1986, 14, 1017. [Google Scholar]
- Omezuruike, O.I.; Damilola, A.O.; Adeola, O.T.; Fajobi, E.A.; Shittu, O.B. Microbiological and physicochemical analysis of different water samples used for domestic purposes in Abeokuta and Ojota, Lagos State, Nigeria. Afr. J. Biotechnol. 2008, 7, 617–621. [Google Scholar]
- Okpara, J.; Maiwald, M.; Borneff, M.; Windeler, J.; Sonntag, H.G. Evaluation of a new version of the EnviroAmp(TM) Legionella kit for the detection of legionellae in water samples by the polymerase chain reaction. Zent. Hyg. Umweltmed. 1996, 198, 502–513. [Google Scholar]
- Ojima, M.; Toshima, Y.; Koya, E.; Ara, K.; Tokuda, H.; Kawai, S.; Kasuga, F.; Ueda, N. Hygiene measures considering actual distributions of microorganisms in Japanese households. J. Appl. Microbiol. 2002, 93, 800–809. [Google Scholar] [CrossRef]
- Ojima, M.; Toshima, Y.; Koya, E.; Ara, K.; Kawai, S.; Ueda, N. Bacterial contamination of Japanese households and related concern about sanitation. Int. J. Environ. Health Res. 2002, 12, 41–52. [Google Scholar] [CrossRef]
- Obi, C.L.; Ramalivhana, J.; Momba, M.N.B.; Igumbor, J. Scope and frequency of enteric bacterial pathogens isolated from HIV/AIDS patients and their household drinking water in Limpopo Province. Water SA 2007, 33, 539–548. [Google Scholar]
- Nishiuchi, Y.; Maekura, R.; Kitada, S.; Tamaru, A.; Taguri, T.; Kira, Y.; Hiraga, T.; Hirotani, A.; Yoshimura, K.; Miki, M.; et al. The recovery of Mycobacterium avium-intracellulare complex (MAC) from the residential bathrooms of patients with pulmonary MAC. Clin. Infect. Dis. 2007, 45, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Fasano, F.; Iatta, R.; Barbuti, G.; Cuna, T.; Montagna, M.T. Legionella spp. and legionellosis in southeastern Italy: Disease epidemiology and environmental surveillance in community and health care facilities. BMC Public Health 2010, 10, 660. [Google Scholar] [CrossRef]
- Montagna, M.T.; Napoli, C.; Tatò, D.; Spilotros, G.; Barbuti, G.; Barbuti, S. Clinical-environmental surveillance of legionellosis: An experience in Southern Italy. Eur. J. Epidemiol. 2006, 21, 325–331. [Google Scholar] [CrossRef]
- Mohanty, P.S.; Naaz, F.; Katara, D.; Misba, L.; Kumar, D.; Dwivedi, D.K.; Tiwari, A.K.; Chauhan, D.S.; Bansal, A.K.; Tripathy, S.P.; et al. Viability of Mycobacterium leprae in the environment and its role in leprosy dissemination. Indian J. Dermatol. Venereol. Leprol. 2016, 82, 23–27. [Google Scholar] [CrossRef]
- Miyagi, K.; Sano, K.; Hirai, I. Sanitary evaluation of domestic water supply facilities with storage tanks and detection of Aeromonas, enteric and related bacteria in domestic water facilities in Okinawa Prefecture of Japan. Water Res. 2017, 119, 171–177. [Google Scholar] [CrossRef]
- McBain, A.J.; Bartolo, R.G.; Catrenich, C.E.; Charbonneau, D.; Ledder, R.G.; Rickard, A.H.; Symmons, S.A.; Gilbert, P. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl. Environ. Microbiol. 2003, 69, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Marras, T.K.; Wallace, R.J.; Koth, L.L.; Stulbarg, M.S.; Cowl, C.T.; Daley, C.L. Hypersensitivity pneumonitis reaction to Mycobacterium avium in household water. Chest 2005, 127, 664–671. [Google Scholar] [CrossRef] [Green Version]
- MacMartin, T.L.; Graham, C.I.; Farenhorst, A.; Brassinga, A.K.C. Complete genome sequences of two environmental Legionella isolates obtained from potable water sourced in a first nation community. Microbiol. Resour. Announc. 2021, 10, e01237-20. [Google Scholar] [CrossRef]
- Lührig, K.; Canbäck, B.; Paul, C.J.; Johansson, T.; Persson, K.M.; Rådström, P. Bacterial community analysis of drinking water biofilms in southern Sweden. Microbes Environ. 2015, 30, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Lück, P.C.; Schneider, T.; Wagner, J.; Walther, I.; Reif, U.; Weber, S.; Weist, K. Community-acquired Legionnaires’ disease caused by Legionella pneumophila serogroup 10 linked to the private home. J. Med. Microbiol. 2008, 57, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Tao, Y.; Zhang, Y.; Lut, M.; Knibbe, W.J.; van der Wielen, P.; Liu, W.; Medema, G.; van der Meer, W. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system. Water Res. 2017, 124, 435–445. [Google Scholar] [CrossRef]
- Lin, W.F.; Ye, C.S.; Gu, L.Z.; Hu, D.; Yu, X. Analysis of microbial contamination of household water purifiers. Appl. Microbiol. Biotechnol. 2020, 104, 4533–4545. [Google Scholar] [CrossRef] [PubMed]
- Lienard, J.; Croxatto, A.; Gervaix, A.; Lévi, Y.; Loret, J.F.; Posfay-Barbe, K.M.; Greub, G. Prevalence and diversity of Chlamydiales and other amoeba-resisting bacteria in domestic drinking water systems. New Microbes New Infect. 2017, 15, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Levesque, B.; Simard, P.; Gauvin, D.; Gingras, S.; Dewailly, E.; Letarte, R. Comparison of the microbiological quality of water coolers and that of municipal water systems. Appl. Environ. Microbiol. 1994, 60, 1174–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leoni, E.; De Luca, G.; Legnani, P.P.; Sacchetti, R.; Stampi, S.; Zanetti, F. Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems. J. Appl. Microbiol. 2005, 98, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Lecuona, M.; Abreu, R.; Rodríguez-Álvarez, C.; Castro, B.; Campos, S.; Hernández-Porto, M.; Mendoza, P.; Arias, A. First isolation of Mycobacterium canariasense from municipal water supplies in Tenerife, Canary Islands, Spain. Int. J. Hyg. Environ. Health 2016, 219, 48–52. [Google Scholar] [CrossRef]
- Lande, L.; Alexander, D.C.; Wallace, R.J., Jr.; Kwait, R.; Iakhiaeva, E.; Williams, M.; Cameron, A.D.S.; Olshefsky, S.; Devon, R.; Vasireddy, R.; et al. Mycobacterium avium in community and household water, suburban Philadelphia, Pennsylvania, USA, 2010-2012. Emerg. Infect. Dis. 2019, 25, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, T.; Watanabe, Y.; Teranishi, H.; Izumiyama, S.; Amemura-Maekawa, J.; Kura, F. Legionella prevalence and risk of legionellosis in Japanese households. Epidemiol. Infect. 2017, 145, 1398–1408. [Google Scholar] [CrossRef] [Green Version]
- Kohnen, W.; Teske-Keiser, S.; Meyer, H.G.; Loos, A.H.; Pietsch, M.; Jansen, B. Microbiological quality of carbonated drinking water produced with in-home carbonation systems. Int. J. Hyg. Environ. Health 2005, 208, 415–423. [Google Scholar] [CrossRef]
- Kim, T.; Lye, D.; Donohue, M.; Mistry, J.H.; Pfaller, S.; Vesper, S.; Kirisits, M.J. Harvested rainwater quality before and after treatment and distribution in residential systems. J.-Am. Water Work. Assoc. 2016, 108, E571–E584. [Google Scholar] [CrossRef]
- Jones, F.; Ashcroft, C. Survey to detect Legionella pneumophila in potable waters in Northwest England. Water Environ. J. 1988, 2, 460–464. [Google Scholar] [CrossRef]
- Joly, J. Legionella and domestic water heaters in the Quebec City area. Can. Med. Assoc. J. 1985, 132, 160. [Google Scholar]
- Jiang, L.; Zhao, S.; Cai, X.; Mu, D.; Zhang, X.; Kang, J.; Zhao, L.; Chen, Y. Sequence-based typing of clinical and environmental Legionella pneumophila isolates in Shenyang, China. Enferm. Infecc. Y Microbiol. Clin. 2020, 39, 10016. [Google Scholar] [CrossRef]
- Islam, M.A.; Sakakibara, H.; Karim, M.R.; Sekine, M.; Mahmud, Z.H. Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh. J. Water Health 2011, 9, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, N.; Suzuki, H.; Tokuda, Y.; Takano, T. Severe Legionnaires’ disease with pneumonia and biopsy-confirmed myocarditis most likely caused by Legionella pneumophila serogroup 6. Intern. Med. 2012, 51, 3207–3212. [Google Scholar] [CrossRef] [Green Version]
- Isaac, T.S.; Sherchan, S.P. Molecular detection of opportunistic premise plumbing pathogens in rural Louisiana’s drinking water distribution system. Environ. Res. 2020, 181, 108847. [Google Scholar] [CrossRef]
- Ichijo, T.; Izumi, Y.; Nakamoto, S.; Yamaguchi, N.; Nasu, M. Distribution and respiratory activity of mycobacteria in household water system of healthy volunteers in Japan. PLoS ONE 2014, 9, 0110554. [Google Scholar] [CrossRef]
- Iakhiaeva, E.; Howard, S.T.; Brown Elliott, B.A.; McNulty, S.; Newman, K.L.; Falkinham Iii, J.O.; Williams, M.; Kwait, R.; Lande, L.; Vasireddy, R.; et al. Variable-number tandem-repeat analysis of respiratory and household water biofilm isolates of “Mycobacterium avium subsp. hominissuis” with establishment of a PCR database. J. Clin. Microbiol. 2016, 54, 891–901. [Google Scholar] [CrossRef] [Green Version]
- Hull, N.M.; Reens, A.L.; Robertson, C.E.; Stanish, L.F.; Harris, J.K.; Stevens, M.J.; Frank, D.N.; Kotter, C.; Pace, N.R. Molecular analysis of single room humidifier bacteriology. Water Res. 2015, 69, 318–327. [Google Scholar] [CrossRef]
- Honda, J.R.; Hasan, N.A.; Davidson, R.M.; Williams, M.D.; Epperson, L.E.; Reynolds, P.R.; Smith, T.; Iakhiaeva, E.; Bankowski, M.J.; Wallace, R.J., Jr.; et al. Environmental nontuberculous Mycobacteria in the Hawaiian Islands. PLoS Negl. Trop. Dis. 2016, 10, e0005068. [Google Scholar] [CrossRef] [Green Version]
- Hankwitz, P.E.; Cervia, J.S.; Thomas, C.F.; Fink, J.N.; Marras, T.; Tomic, R. Nontuberculous mycobacterial hypersensitivity pneumonitis related to a home shower: Treatment and secondary prevention. BMJ Case Rep. 2011, 2011, 4360. [Google Scholar] [CrossRef]
- Haig, S.J.; Kotlarz, N.; Kalikin, L.M.; Chen, T.; Guikema, S.; LiPuma, J.J.; Raskin, L. Emerging investigator series: Bacterial opportunistic pathogen gene markers in municipal drinking water are associated with distribution system and household plumbing characteristics. Environ. Sci.-Water Res. Technol. 2020, 6, 3032–3043. [Google Scholar] [CrossRef]
- Haig, S.J.; Kotlarz, N.; Lipuma, J.J.; Raskin, L. A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium. mBio 2018, 9, e02354-17. [Google Scholar] [CrossRef] [Green Version]
- Glover, N.; Aronson, T.; Froman, S.; Berlin, O.G.W.; Dominguez, P.; Kunkel, K.A. The isolation and identification of Mycobacterium avium complex (MAC) recovered from Los Angeles potable water, a possible source of infection in aids patients. Int. J. Environ. Health Res. 1994, 4, 63–72. [Google Scholar] [CrossRef]
- Germinario, C.; Tafuri, S.; Napoli, C.; Martucci, V.; Termite, S.; Pedote, P.; Montagna, M.T.; Quarto, M. An outbreak of pneumonia in a thermal water spa contaminated with Pseudomonas aeruginosa: An epidemiological and environmental concern. Afr. J. Microbiol. Res. 2012, 6, 1978–1984. [Google Scholar] [CrossRef]
- Gebert, M.J.; Delgado-Baquerizo, M.; Oliverio, A.M.; Webster, T.M.; Nichols, L.M.; Honda, J.R.; Chan, E.D.; Adjemian, J.; Dunn, R.R.; Fierer, N. Ecological analyses of mycobacteria in showerhead biofilms and their relevance to human health. mBio 2018, 9, e01614-18. [Google Scholar] [CrossRef] [Green Version]
- Garner, E.; Brown, C.L.; Schwake, D.O.; Rhoads, W.J.; Arango-Argoty, G.; Zhang, L.Q.; Jospin, G.; Coil, D.A.; Eisen, J.A.; Edwards, M.A.; et al. Comparison of whole genome sequences of Legionella pneumophila in tap water and in clinical strains, Flint, Michigan, USA, 2016. Emerg. Infect. Dis. 2019, 25, 2013–2020. [Google Scholar] [CrossRef] [Green Version]
- Fischeder, R.; Schulze-Röbbecke, R.; Weber, A. Occurrence of mycobacteria in drinking water samples. Int. J. Hyg. Environ. Med. 1991, 192, 154–158. [Google Scholar]
- Farooqui, A.; Khan, A.; Kazmi, S.U. Investigation of a community outbreak of typhoid fever associated with drinking water. BMC Public Health 2009, 9, 476. [Google Scholar] [CrossRef] [Green Version]
- Falkinham Iii, J.O. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg. Infect. Dis. 2011, 17, 419–424. [Google Scholar] [CrossRef]
- Euser, S.M.; Pelgrim, M.; Den Boer, J.W. Legionnaires’ disease and Pontiac fever after using a private outdoor whirlpool spa. Scand. J. Infect. Dis. 2010, 42, 910–916. [Google Scholar] [CrossRef]
- Eguchi, H.; Miyamoto, T.; Kuwahara, T.; Mitamura, S.; Mitamura, Y. Infectious conjunctivitis caused by Pseudomonas aeruginosa isolated from a bathroom. BMC Res. Notes 2013, 6, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufresne, S.F.; Locas, M.C.; Duchesne, A.; Restieri, C.; Ismail, J.; Lefebvre, B.; Labbe, A.C.; Dion, R.; Plante, M.; Laverdiere, M. Sporadic Legionnaires’ disease: The role of domestic electric hot-water tanks. Epidemiol. Infect. 2012, 140, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovriki, E.; Gerogianni, I.; Petinaki, E.; Hadjichristodoulou, C.; Papaioannou, A.; Gourgoulianis, K. Isolation and identification of nontuberculous mycobacteria from hospitalized patients and drinking water samples-examination of their correlation by chemometrics. Environ. Monit. Assess. 2016, 188, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Donohue, M.J.; O’Connell, K.; Vesper, S.J.; Mistry, J.H.; King, D.; Kostich, M.; Pfaller, S. Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ. Sci. Technol. 2014, 48, 3145–3152. [Google Scholar] [CrossRef]
- Donati, M.; Cremonini, E.; Di Francesco, A.; Dallolio, L.; Biondi, R.; Muthusamy, R.; Leoni, E. Prevalence of Simkania negevensis in chlorinated water from spa swimming pools and domestic supplies. J. Appl. Microbiol. 2015, 118, 1076–1082. [Google Scholar] [CrossRef]
- Dhruve, M.J.; Bunce, P.E.; D’Gama, C.; Chan, C.T. Case of Mycobacterium mucogenicum in a home hemodialysis patient. Hemodial. Int. 2017, 21, E79–E81. [Google Scholar] [CrossRef]
- Dewailly, E.; Joly, J.R. Contamination of domestic water heaters with Legionella pneumophila: Impact of water temperature on growth and dissemination of the bacterium. Environ. Toxicol. Water Qual. 1991, 6, 249–257. [Google Scholar] [CrossRef]
- Denton, M.; Todd, N.J.; Kerr, K.G.; Hawkey, P.M.; Littlewood, J.M. Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. J. Clin. Microbiol. 1998, 36, 1953–1958. [Google Scholar] [CrossRef] [Green Version]
- De Victorica, J.; Galvan, M. Pseudomonas aeruginosa as an indicator of health risk in water for human consumption. Water Sci. Technol. 2001, 43, 49–52. [Google Scholar] [CrossRef] [Green Version]
- De Sotto, R.; Tang, R.; Bae, S. Biofilms in premise plumbing systems as a double-edged sword: Microbial community composition and functional profiling of biofilms in a tropical region. J. Water Health 2020, 18, 172–185. [Google Scholar] [CrossRef]
- Cooper, I.R.; White, J.; Mahenthiralingam, E.; Hanlon, G.W. Long-term persistence of a single Legionella pneumophila strain possessing the mip gene in a municipal shower despite repeated cycles of chlorination. J. Hosp. Infect. 2008, 70, 154–159. [Google Scholar] [CrossRef]
- Colbourne, J.S.; Trew, R.M. Presence of Legionella in London’s water supplies. Isr. J. Med. Sci. 1986, 22, 633–639. [Google Scholar]
- Cohn, P.D.; Gleason, J.A.; Rudowski, E.; Tsai, S.M.; Genese, C.A.; Fagliano, J.A. Community outbreak of legionellosis and an environmental investigation into a community water system. Epidemiol. Infect. 2015, 143, 1322–1331. [Google Scholar] [CrossRef] [Green Version]
- Codony, F.; Álvarez, J.; Oliva, J.M.; Ciurana, B.; Company, M.; Camps, N.; Torres, J.; Minguell, S.; Jové, N.; Cirera, E.; et al. Factors promoting colonization by Legionellae in residential water distribution systems: An environmental case-control survey. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 717–721. [Google Scholar] [CrossRef]
- Chouhan, S.; Pancholi, A.; Vyas, R. Sanitary analysis of sitaraam Jaju Sagar Dam, Neemuch, Madhya Pradesh. Asian J. Microbiol. Biotechnol. Environ. Sci. 2014, 16, 167–173. [Google Scholar]
- Chen, Y.S.; Lin, W.R.; Liu, Y.C.; Chang, C.L.; Gan, V.L.; Huang, W.K.; Huang, T.S.; Wann, S.R.; Lin, H.H.; Lee, S.S.J.; et al. Residential water supply as a likely cause of community-acquired Legionnaires’ disease in an immunocompromised host. Eur. J. Clin. Microbiol. Infect. Dis. 2002, 21, 706–709. [Google Scholar] [CrossRef]
- Charnock, C.; Hagen, R.X.; Nguyen, T.N.T.; Vo, L.T. Diversion and phylogenetic relatedness of filterable bacteria from Norwegian tap and bottled waters. J. Water Health 2019, 17, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Saxena, T.; Nehra, S.; Mohan, M.K. Quality assessment of supplied drinking water in Jaipur city, India, using PCR-based approach. Environ. Earth Sci. 2016, 75, 153. [Google Scholar] [CrossRef]
- Chaidez, C.; Soto, M.; Martinez, C.; Keswick, B. Drinking water microbiological survey of the Northwestern State of Sinaloa, Mexico. J. Water Health 2008, 6, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Chaidez, C.; Candil-Ruiz, A.; Gerba, C.P. Microbiological survey of private roof water tanks in Culiacan, Mexico. J. Environ. Sci. Health 1999, 34, 1967–1978. [Google Scholar] [CrossRef]
- Castillo, M.; Bernabe, L.A.; Castaneda, C.A.; Chavez, I.; Ruiz, E.; Barreda, F.; Valdivia, D.; Suarez, N.; Nieves, J.; Dias-Neto, E.; et al. Helicobacter pylori detected in tap water of peruvian patients with gastric cancer. Asian Pac. J. Cancer Prev. 2019, 20, 3193–3196. [Google Scholar] [CrossRef]
- Burke, V.; Robinson, J.; Gracey, M.; Peterson, D.; Meyer, N.; Haley, V. Isolation of Aeromonas spp. from an unchlorinated domestic water supply. Appl. Environ. Microbiol. 1984, 48, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Burak, D.M.; Zeybek, Z. Investigation of Legionella pneumophila and free living amoebas in the domestic hot water systems in Istanbul. Turk. J. Biol. 2011, 35, 679–685. [Google Scholar] [CrossRef]
- Buchholz, U.; Jahn, H.J.; Brodhun, B.; Lehfeld, A.S.; Lewandowsky, M.M.; Reber, F.; Adler, K.; Bochmann, J.; Förster, C.; Koch, M.; et al. Source attribution of community-acquired cases of Legionnaires’ disease-results from the German LeTriWa study; Berlin, 2016-2019. PLoS ONE 2020, 15, e0241724. [Google Scholar] [CrossRef]
- Briancesco, R.; Semproni, M.; Libera, S.D.; Sdanganelli, M.; Bonadonna, L. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems. Ann. Ist. Super. Sanita 2010, 46, 254–258. [Google Scholar] [CrossRef]
- Borella, P.; Montagna, M.T.; Romano-Spica, V.; Stampi, S.; Stancanelli, G.; Triassi, M.; Neglia, R.; Marchesi, I.; Fantuzzi, G.; Tato, D.; et al. Legionella infection risk from domestic hot water. Emerg. Infect. Dis. 2004, 10, 457–464. [Google Scholar] [CrossRef]
- Baqai, R.; Zuberi, S.J. Bacteriological and protozoal study on domestic water supply in Karachi. J. Pak. Med. Assoc. 1991, 41, 33–35. [Google Scholar]
- Bae, S.; Lyons, C.; Onstad, N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water Res. X 2019, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Augoustinos, M.T.; Venter, S.N.; Kfir, R. Assessment of water quality problems due to microbial growth in drinking water distribution systems. Environ. Toxicol. Water Qual. 1995, 10, 295–299. [Google Scholar] [CrossRef]
- Aronson, T.; Holtzman, A.; Glover, N.; Boian, M.; Froman, S.; Berlin, O.G.W.; Hill, H.; Stelma, G. Comparison of large restriction fragments of Mycobacterium avium isolates recovered from AIDS and non-AIDS patients with those of isolates from potable water. J. Clin. Microbiol. 1999, 37, 1008–1012. [Google Scholar] [CrossRef] [Green Version]
- Arnow, P.M.; Weil, D.; Para, M.F. Prevalence and significance of Legionella pneumophila contamination of residential hot-tap water systems. J. Infect. Dis. 1985, 152, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, K.; Ichijo, T.; Nakajima, S.; Nishiuchi, Y.; Yano, H.; Tamaru, A.; Yoshida, S.; Maruyama, F.; Ota, A.; Nasu, M.; et al. Genetic relatedness of Mycobacterium avium subsp. hominissuis isolates from bathrooms of healthy volunteers, rivers, and soils in Japan with human clinical isolates from different geographical areas. Infect. Genet. Evol. 2019, 74, 103923. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Chandu, V.; Nandini, V.; Mostafa, M.; Alkendi, R. Evaluation of water quality in the households of Baniyas Region, Abu Dhabi using multivariate statistical approach. Sustain. Water Resour. Manag. 2019, 5, 1579–1592. [Google Scholar] [CrossRef]
- Alary, M.; Joly, J.R. Comparison of culture methods and an immunofluorescence assay for the detection of Legionella pneumophila in domestic hot water devices. Curr. Microbiol. 1992, 25, 19–23. [Google Scholar] [CrossRef]
- Alary, M.; Joly, J.R. Risk factors for contamination of domestic hot water systems by Legionellae. Appl. Environ. Microbiol. 1991, 57, 2360–2367. [Google Scholar] [CrossRef] [Green Version]
Search Terms Employed to Identify Relevant Literature |
---|
Stenotrophomonas OR Aeromonas OR Acinetobacter OR Legionella OR Mycobacterium * OR “nontuberculous mycobacteria *” OR Pseudomonas OR Methylobacterium or Helicobacter or “opportunistic premise plumbing pathogen *” or “opportunistic waterborne pathogen *” or “legionnaires disease” or legionellosis or “pontiac fever” or pneumonia |
AND |
Home or house or residence * or domestic or household or private |
AND |
Water or potable or shower or tap * or drain or bath or sink or bathroom or plumbing or faucet or biofilm or aerosol or “drinking water” |
Opportunistic Premise Plumbing Pathogen | Number of Studies | Clinical Case Investigations | Prevalence and Pathogen Concentration | |
---|---|---|---|---|
Drinking Water | Biofilm | |||
Legionella spp. | 93 | 20 | 2.4 to 86.7% (1 to 106 CFU/mL) | 1.1 to 100% (5.4 × 102 to 28.6 × 103 CFU/swab) |
Mycobacterium spp. | 60 | 7 | 0.6 to 100% (1 to 1.7 × 104 CFU/mL) | 2.5 to 100% (<101 to 107 cells/cm2) |
Pseudomonas spp. | 60 | 2 | 7.14 to 100% (1 to 640 CFU/mL) | 1.2 to 100% in biofilm samples (1 × 102 to 1.5 × 105 CFU/swab) |
Aeromonas spp. | 20 | 1 | 0.7 to 32.4% (5 to 333.3 CFU/mL) | 3.9 to 77.5% (concentrations not reported) |
Acinetobacter spp. | 14 | 0 | 4.4 to 80% (concentrations not reported) | 1.6 to 2.2% (concentrations not reported) |
Stenotrophomonas spp. | 8 | 0 | 1.5 to 100% (concentrations not reported) | 11 to 100% (concentrations not reported) |
Methylobacterium spp. | 7 | 0 | 12 and 46% (concentrations not reported) | 46% (>10 CFU/mL) |
Helicobacter spp. | 5 | 0 | 7 to 12% (concentrations not reported) | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayward, C.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. The Presence of Opportunistic Premise Plumbing Pathogens in Residential Buildings: A Literature Review. Water 2022, 14, 1129. https://doi.org/10.3390/w14071129
Hayward C, Ross KE, Brown MH, Bentham R, Whiley H. The Presence of Opportunistic Premise Plumbing Pathogens in Residential Buildings: A Literature Review. Water. 2022; 14(7):1129. https://doi.org/10.3390/w14071129
Chicago/Turabian StyleHayward, Claire, Kirstin E. Ross, Melissa H. Brown, Richard Bentham, and Harriet Whiley. 2022. "The Presence of Opportunistic Premise Plumbing Pathogens in Residential Buildings: A Literature Review" Water 14, no. 7: 1129. https://doi.org/10.3390/w14071129