Understanding Two Decades of Turbidity Dynamics in a Coral Triangle Hotspot: The Berau Coastal Shelf
Abstract
:1. Introduction
2. Site Study
3. Data and Methods
3.1. Remote Sensing Data
3.2. Met-Ocean Data
4. Results
4.1. Spatiotemporal Pattern
4.2. Time Series Analysis of Specific Regions
4.3. TSM Concentration Versus Met-Ocean Data
4.3.1. Monthly Variation
4.3.2. Interannual Variation
5. Discussion
5.1. Spatial and Temporal Distribution Patterns of TSM
5.2. Regional Climate Variability
5.3. Coastal Ecosystem Stressors
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cloern, J.E. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Cont. Shelf Res. 1987, 7, 1367–1381. [Google Scholar] [CrossRef]
- Flores, F.; Hoogenboom, M.O.; Smith, L.D.; Cooper, T.F.; Abrego, D.; Negri, A.P. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts. PLoS ONE 2012, 7, e37795. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; van der Welle, M.E.W.; Lucassen, E.C.H.E.T.; Vonk, J.A.; Christianen, M.J.A.; Kiswara, W.; Inayat al Hakim, I.; Arifin, A.; Bouma, T.J.; Roelofs, J.G.M.; et al. Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: A benchmark from a near-pristine archipelago in Indonesia. Mar. Pollut. Bull. 2011, 62, 1512–1520. [Google Scholar] [CrossRef]
- Tarya, A.; Hoitink, A.J.F.; Van der Vegt, M. Tidal and subtidal flow patterns on a tropical continental shelf semi-insulated by coral reefs. J. Geophys. Res. Oceans 2010, 115, C09029. [Google Scholar] [CrossRef]
- Hoeksema, B.W. Evolutionary trends in onshore-offshore distribution patterns of mushroom coral species (Scleractinia: Fungiidae). Contrib. Zool. 2012, 81, 199–221. [Google Scholar] [CrossRef]
- Hoeksema, B.W.; Tuti, Y.; Becking, L.E. Mixed medusivory by the sea anemone Entacmaea medusivora (Anthozoa: Actiniaria) in Kakaban Lake, Indonesia. Mar. Biodivers. 2014, 45, 141–142. [Google Scholar] [CrossRef]
- de Voogd, N.J.; Becking, L.E.; Cleary, D.F.R. Sponge community composition in the Derawan Islands, NE Kalimantan, Indonesia. Mar. Ecol. Prog. Ser. 2009, 396, 169–180. [Google Scholar] [CrossRef]
- Buschman, F.A.; Hoitink, A.J.F.; de Jong, S.M.; Hoekstra, P.; Hidayat, H.; Sassi, M.G. Suspended sediment load in the tidal zone of an Indonesian river. Hydrol. Earth Syst. Sci. 2012, 16, 4191–4204. [Google Scholar] [CrossRef]
- Parwati, E.; Kartasasmita, M.; Soewardi, K.; Kusumastanto, T.; Nurjaya, I.W. the relationship between total suspended solid (tss) and coral reef growth (case study of derawan island, delta berau waters). Int. J. Remote Sens. Earth Sci. IJReSES 2014, 10, 104–113. [Google Scholar] [CrossRef]
- Ambarwulan, W.; Verhoef, W.; Mannaerts, C.M.; Salama, M.S. Estimating total suspended matter concentration in tropical coastal waters of the Berau estuary, Indonesia. Int. J. Remote Sens. 2012, 33, 4919–4936. [Google Scholar] [CrossRef]
- Ambarwulan, W.; Salama, M.S.; Verhoef, W.; Mannaerts, C.M. The estimation of total suspended matter from satellite imagery of tropical coastal water Berau Estuary, Indonesia. IOP Conf. Series Earth Environ. Sci. 2022, 950, 012089. [Google Scholar] [CrossRef]
- Cartwright, P.J.; Fearns, P.R.C.S.; Branson, P.; Cuttler, M.V.W.; O’leary, M.; Browne, N.K.; Lowe, R.J. Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change. Remote Sens. 2021, 13, 3616. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Santoso, A.; McPhaden, M.J.; Wu, L.; Jin, F.-F.; Timmermann, A.; Collins, M.; Vecchi, G.; Lengaigne, M.; et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Chang. 2015, 5, 132–137. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Li, Z.; Zheng, X.; Yang, K.; Ng, B. Response of the Positive Indian Ocean Dipole to Climate Change and Impact on Indian Summer Monsoon Rainfall. In Indian Summer Monsoon Variability El-Nino Teleconnections and Beyond; Elsevier: Amsterdam, The Netherlands, 2021; pp. 413–432. [Google Scholar] [CrossRef]
- Hoeksema, B.W. Impact of budding on free-living corals at East Kalimantan, Indonesia. Coral Reefs 2004, 23, 492. [Google Scholar] [CrossRef]
- Tarya, A.; Hoitink, A.J.F.; Van der Vegt, M.; van Katwijk, M.M.; Hoeksema, B.W.; Bouma, T.J.; Lamers, L.P.M.; Christianen, M.J.A. Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf. Cont. Shelf Res. 2018, 153, 1–15. [Google Scholar] [CrossRef]
- Buschman, F.A.; Hoitink, A.J.F.; van der Vegt, M.; Hoekstra, P. Subtidal flow division at a shallow tidal junction. Water Resour. Res. 2010, 46, W12515. [Google Scholar] [CrossRef]
- Tarya, A.; van der Vegt, M.; Hoitink, A.J.F. Wind forcing controls on river plume spreading on a tropical continental shelf. J. Geophys. Res. Oceans 2014, 120, 16–35. [Google Scholar] [CrossRef]
- Iskandar, I.; Mardiansyah, W.; Lestari, D.O.; Masumoto, Y. What did determine the warming trend in the Indonesian sea. Prog. Earth Planet. Sci. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Aldrian, E.; Susanto, R.D. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Clim. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Lee, H.S. General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity. Water 2015, 7, 1751–1768. [Google Scholar] [CrossRef]
- Chen, S.; Han, L.; Chen, X.; Li, D.; Sun, L.; Li, Y. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method. ISPRS J. Photogramm. Remote Sens. 2015, 99, 58–69. [Google Scholar] [CrossRef]
- Li, L.; Xing, Q.; Li, X.; Yu, D.; Zhang, J.; Zou, J. Assessment of the impacts from the world’s largest floating macroalgae blooms on the water clarity at the west yellow sea using MODIS data (2002–2016). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1397–1402. [Google Scholar] [CrossRef]
- Petus, C.; Collier, C.; Devlin, M.; Rasheed, M.; McKenna, S. Using MODIS data for understanding changes in seagrass meadow health: A case study in the Great Barrier Reef (Australia). Mar. Environ. Res. 2014, 98, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Al-Ghadban, A.N.; Gevao, B.; Al-Shamroukh, D.; Al-Khabbaz, A. Estimation of suspended particulate matter in Gulf using MODIS data. Aquat. Ecosyst. Heal. Manag. 2012, 15, 41–44. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Dong, Q.; Song, Q.T.; Ding, J. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ. 2010, 114, 392–403. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Tarya, A.; Rahmatulloh, R.; Ningsih, N.S. Tidal Impacts on the Discharge Division and Freshwater Transport in the Berau Delta, East Kalimantan, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1198, 012020. [Google Scholar] [CrossRef]
- Shi, H.; Yu, X. Application of transport timescales to coastal environmental assessment: A case study. J. Environ. Manag. 2013, 130, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, J.R.; Wu, H. Impacts of wind stress on saltwater intrusion in the Yangtze Estuary. Sci. China Earth Sci. 2012, 55, 1178–1192. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Thompson, C.; Wang, X.; Cai, T.; Chang, Y. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology 2018, 318, 270–282. [Google Scholar] [CrossRef]
- Khadami, F.; Kawanisi, K.; Tarya, A. Tidal asymmetry in two-inlet lagoon: A case study on segara anakan lagoon, central java, indonesia. J. Jpn. Soc. Civ. Eng. Ser. B1 Hydraulic Eng. 2020, 76, I_1411–I_1416. [Google Scholar] [CrossRef]
- Nur, A.A.; Suprijo, T.; Mandang, I.; Radjawane, I.M.; Park, H.; Khadami, F. Ocean Modeling in the Makassar Strait and Balikpapan Bay Using Online Nesting Method. J. Coast. Res. 2021, 114, 206–210. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, N.; Ding, Y.; Song, D.; Li, J.; Li, M.; Zhou, L.; Yu, H.; Chen, Y.; Bao, X. Numerical Study on the Formation Mechanism of Plume Bulge in the Pearl River Estuary under the Influence of River Discharge. Water 2024, 16, 1296. [Google Scholar] [CrossRef]
- Osadchiev, A.; Alfimenkov, I.; Rogozhin, V. Influence of the Coriolis Force on Spreading of River Plumes. Remote Sens. 2023, 15, 3397. [Google Scholar] [CrossRef]
- Khadami, F.; Kawanisi, K.; Al Sawaf, M.B.; Gusti, G.N.N.; Xiao, C. Spatiotemporal Response of Currents and Mixing to the Interaction of Tides and River Runoff in a Mesotidal Estuary. Ocean Sci. J. 2022, 57, 37–51. [Google Scholar] [CrossRef]
- Tseng, Y.-F.; Lin, J.; Dai, M.; Kao, S.-J. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River. Biogeosciences 2014, 11, 409–423. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Wang, G.; Yeh, S.-W.; An, S.-I.; Cobb, K.M.; Collins, M.; Guilyardi, E.; Jin, F.-F.; Kug, J.-S.; et al. ENSO and greenhouse warming. Nat. Clim. Chang. 2015, 5, 849–859. [Google Scholar] [CrossRef]
- Ham, Y.-G. El Niño events will intensify under global warming. Nature 2018, 564, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef]
- Liu, G.; Strong, A.E.; Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos 2003, 84, 137–141. [Google Scholar] [CrossRef]
- Bonesso, J.L.; Leggat, W.; Ainsworth, T.D. Exposure to Elevated Sea-Surface Temperatures below the Bleaching Threshold Impairs Coral Recovery and Regeneration Following Injury. PeerJ 2017, 5, e3719. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.T.K.; Hadibarata, T. Seagrass Meadows under the Changing Climate: A Review of the Impacts of Climate Stressors. Res. Ecol. 2022, 4, 27–36. [Google Scholar] [CrossRef]
- Ningsih, N.S.; Gunawan, S.R.; Beliyana, E.; Tarya, A. Marine Heatwave Characteristics in the Makassar Strait and Its Surrounding Waters. Water 2023, 15, 2645. [Google Scholar] [CrossRef]
Met-Ocean Variable | r Value | p Value | Correlation | |
---|---|---|---|---|
TSM River Mouth | Precipitation | 0.075 | 0.245 | Not Significant |
Wind, Zonal | 0.151 | 0.019 | Significant | |
Wind, Meridional | 0.088 | 0.173 | Significant | |
ENSO | −0.084 | 0.192 | Not Significant | |
DMI | −0.061 | 0.349 | Not Significant | |
TSM North | Precipitation | 0.313 | 7.70 × 10−7 | Significant |
Wind, Zonal | −0.050 | 0.442 | Not Significant | |
Wind, Meridional | −0.213 | 0.001 | Significant | |
ENSO | 0.048 | 0.456 | Not Significant | |
DMI | −0.035 | 0.585 | Not Significant | |
TSM South | Precipitation | 0.275 | 1.55 × 10−5 | Significant |
Wind, Zonal | −0.409 | 4.18 × 10−11 | Significant | |
Wind, Meridional | −0.590 | 7.29 × 10−24 | Significant | |
ENSO | −0.048 | 0.463 | Not Significant | |
DMI | −0.097 | 0.132 | Not Significant |
Met-Ocean Variable | r Value | p Value | Correlation | |
---|---|---|---|---|
TSM River Mouth | Precipitation | 0.353 | 1.80 × 10−8 | Significant |
Wind, Zonal | 0.536 | 3.04 × 10−19 | Significant | |
Wind, Meridional | 0.536 | 3.04 × 10−19 | Significant | |
ENSO | −0.543 | 7.99 × 10−20 | Significant | |
DMI | −0.397 | 1.65 × 10−10 | Significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadami, F.; Tarya, A.; Radjawane, I.M.; Suprijo, T.; Sujatmiko, K.A.; Anwar, I.P.; Hidayatullah, M.F.; Erlangga, M.F.R.A. Understanding Two Decades of Turbidity Dynamics in a Coral Triangle Hotspot: The Berau Coastal Shelf. Water 2024, 16, 2300. https://doi.org/10.3390/w16162300
Khadami F, Tarya A, Radjawane IM, Suprijo T, Sujatmiko KA, Anwar IP, Hidayatullah MF, Erlangga MFRA. Understanding Two Decades of Turbidity Dynamics in a Coral Triangle Hotspot: The Berau Coastal Shelf. Water. 2024; 16(16):2300. https://doi.org/10.3390/w16162300
Chicago/Turabian StyleKhadami, Faruq, Ayi Tarya, Ivonne Milichristi Radjawane, Totok Suprijo, Karina Aprilia Sujatmiko, Iwan Pramesti Anwar, Muhamad Faqih Hidayatullah, and Muhamad Fauzan Rizky Adisty Erlangga. 2024. "Understanding Two Decades of Turbidity Dynamics in a Coral Triangle Hotspot: The Berau Coastal Shelf" Water 16, no. 16: 2300. https://doi.org/10.3390/w16162300
APA StyleKhadami, F., Tarya, A., Radjawane, I. M., Suprijo, T., Sujatmiko, K. A., Anwar, I. P., Hidayatullah, M. F., & Erlangga, M. F. R. A. (2024). Understanding Two Decades of Turbidity Dynamics in a Coral Triangle Hotspot: The Berau Coastal Shelf. Water, 16(16), 2300. https://doi.org/10.3390/w16162300