Microalgae-Assisted Treatment of Wastewater Originating from Varied Sources, Particularly in the Context of Heavy Metals and Antibiotic-Resistant Bacteria
Abstract
:1. Introduction
2. Material and Methods
2.1. Microalga Culturing
2.2. Collection of Wastewater Samples
2.3. Experimental Setup for Wastewater Treatment
2.4. Wastewater Analyses
2.4.1. pH Evaluation
2.4.2. Total Nitrogen (TN)
2.4.3. Total Phosphorus (TP)
2.4.4. Biological Oxygen Demand (BOD)
2.4.5. Chemical Oxygen Demand (COD)
2.5. Evaluation of Environmental Contaminants
2.5.1. Heavy Metal (HM) Assessment
2.5.2. Analysis of Antibiotic-Resistant Bacteria (ARB)
2.5.3. Characterization of Antibiotic-Resistant Bacteria (ARB)
Isolation of ARB
Antibiotic Susceptibility Testing
DNA Extraction
Amplification by Polymerase Chain Reaction (PCR)
Phylogenetic Analysis
2.6. Statistical Analyses
3. Results
3.1. pH
3.2. Removal of Nutrient Pollutants
3.2.1. Total Nitrogen
3.2.2. Total Phosphorus
3.3. Removal of Organic Pollutants
3.3.1. Biological Oxygen Demand—BOD
3.3.2. Chemical Oxygen Demand—COD
3.4. Removal of Heavy Metal Pollutants
3.5. Removal of Biological Pollutants
3.5.1. Antibiotic Resistant Bacteria—ARB
3.5.2. Colony Morphology and Biochemical Tests of the Isolated Bacterial Strains
3.5.3. Antibiotic Susceptibility Profile of Isolated Bacterial Strains
3.5.4. Identification of Antibiotic-Resistant Bacterial Strains
3.5.5. Phylogenetic Tree and Molecular Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sukhesh, M.J.; Akula, U.K.; Oggu, P.; Mothe, S.; Korpe, S.; Kunnoth, B.; Venkatesh, N. Hydrogeochemical Investigation and Groundwater Quality Assessment in Patancheruvu Area Sangareddy District, South India. Ecol. Eng. Environ. Technol. 2023, 24, 70–81. [Google Scholar]
- Zhou, S.; Zhu, J.; Wang, Z.; Yang, Z.; Yang, W.; Yin, Z. Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: Enhanced antibiotics removal, membrane fouling control and mechanisms. Water Res. 2022, 220, 118635. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, D.; Mphahlele, K.; De Paola, F.; Mthombeni, N.H. Microalgae-mediated biosorption for effective heavy metals removal from wastewater: A review. Water 2024, 16, 718. [Google Scholar] [CrossRef]
- Liberti, D.; Pinheiro, F.; Simões, B.; Varela, J.; Barreira, L. Beyond Bioremediation: The Untapped Potential of Microalgae in Wastewater Treatment. Water 2024, 16, 2710. [Google Scholar] [CrossRef]
- Al-Jabri, H.; Das, P.; Khan, S.; Thaher, M.; Abdul Quadir, M. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—A review. Water 2020, 13, 27. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q.; Yu, H.; Du, X.; Zhang, T.; Sun, T.; Song, W. Assessing the potential of Chlorella sp. phycoremediation liquid digestates from brewery wastes mixture integrated with bioproduct production. Front. Bioeng. Biotechnol. 2023, 11, 1199472. [Google Scholar] [CrossRef]
- Kuznietsov, P.; Biedunkova, O. Study of Changes in Acid-Alkaline Balance of Cooling Water Circulating System of Power Plants during Water Treatment by Liming According to Stabilization Treatment Method. In Proceedings of the 4th International Scientific Conference «Chemical Technology and Engineering: Proceedings, Lviv, Ukraine, 26–29 June 2023; pp. 239–241. [Google Scholar]
- Poustie, A.; Yang, Y.; Verburg, P.; Pagilla, K.; Hanigan, D. Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. Sci. Total Environ. 2020, 739, 139756. [Google Scholar] [CrossRef]
- Moondra, N.; Jariwala, N.D.; Christian, R.A. Sustainable treatment of domestic wastewater through microalgae. Int. J. Phytoremediat. 2020, 22, 1480–1486. [Google Scholar] [CrossRef]
- Posadas, E.; Alcántara, C.; García-Encina, P.A.; Gouveia, L.; Guieysse, B.; Norvill, Z.; Muñoz, R. Microalgae cultivation in wastewater. In Microalgae-Based Biofuels and Bioproducts; Woodhead Publishing: Cambridge, UK, 2017; pp. 67–91. [Google Scholar]
- Nguyen, L.N.; Aditya, L.; Vu, H.P.; Johir, A.H.; Bennar, L.; Ralph, P.; Nghiem, L.D. Nutrient removal by algae-based wastewater treatment. Curr. Pollut. Rep. 2022, 8, 369–383. [Google Scholar] [CrossRef]
- Pavliukh, L.; Shamanskyi, S.; Boichenko, S.; Jaworski, A. Evaluation of the potential of commercial use of microalgae in the world and in Ukraine. Aircr. Eng. Aerosp. Technol. 2020, 93, 429. [Google Scholar] [CrossRef]
- Mantzorou, A.; Navakoudis, E.; Paschalidis, K.; Ververidis, F. Microalgae: A potential tool for remediating aquatic environments from toxic metals. Int. J. Environ. Sci. Technol. 2018, 15, 1815–1830. [Google Scholar] [CrossRef]
- Manzoor, F.; Karbassi, A.; Golzary, A. Removal of heavy metal contaminants from wastewater by using Chlorella vulgaris Beijerinck: A review. Curr. Environ. Manag. (Former. Curr. Environ. Eng.) 2019, 6, 174–187. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mustafa, F.S.; Omer, K.M.; Hama, S.; Hamarawf, R.F.; Rahman, K.O. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Adv. 2023, 13, 17595–17610. [Google Scholar] [CrossRef]
- Kharel, H.L.; Shrestha, I.; Tan, M.; Nikookar, M.; Saraei, N.; Selvaratnam, T. Cyanidiales-Based Bioremediation of Heavy Metals. BioTech 2023, 12, 29. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of copper ions from wastewater: A review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Han, G.; Xu, J.; Zhang, X.; Pan, X. Efficiency and driving factors of Agricultural Carbon emissions: A study in Chinese state farms. Agriculture 2024, 14, 1454. [Google Scholar] [CrossRef]
- Adugna, C.; Sivalingam, K.M. Prevalence of Multiple Drug-Resistant Bacteria in the Main Campus Wastewater Treatment Plant of Wolaita Sodo University, Southern Ethiopia. Int. J. Microbiol. 2022, 2022, 1781518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ning, R.; Zheng, Q.; Gao, K. Microalgae-based biotechnology as a promising strategy for removing antibiotics from wastewater: Opportunities, challenges and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1248765. [Google Scholar] [CrossRef]
- Leng, L.; Wei, L.; Xiong, Q.; Xu, S.; Li, W.; Lv, S.; Zhou, W. Use of microalgae-based technology for the removal of antibiotics from wastewater: A review. Chemosphere 2020, 238, 124680. [Google Scholar] [CrossRef]
- Shi, X.; Yeap, T.S.; Huang, S.; Chen, J.; Ng, H.Y. Pretreatment of saline antibiotic wastewater using marine microalga. Bioresour. Technol. 2018, 258, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Plöhn, M.; Spain, O.; Sirin, S.; Silva, M.; Escudero-Oñate, C.; Ferrando-Climent, L.; Funk, C. Wastewater treatment by microalgae. Physiol. Plant. 2021, 173, 568–578. [Google Scholar] [CrossRef]
- Gu, J.D. On enrichment culturing and transferring technique. Appl. Environ. Biotechnol. 2021, 6, 1–5. [Google Scholar] [CrossRef]
- Delgado-Blas, J.F.; Ovejero, C.M.; David, S.; Montero, N.; Calero-Caceres, W.; Garcillan-Barcia, M.P.; Gonzalez-Zorn, B. Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments. Commun. Biol. 2021, 4, 457. [Google Scholar] [CrossRef] [PubMed]
- Inuwa, A.B.; Mahmood, Q.; Iqbal, J.; Widemann, E.; Shafiq, S.; Irshad, M.; Irshad, U.; Iqbal, A.; Hafeez, F.; Nazir, R. Removal of antibiotic resistance genes, class 1 integrase gene and Escherichia coli indicator gene in a microalgae-based wastewater treatment system. Antibiotics 2022, 11, 1531. [Google Scholar] [CrossRef]
- Acurio, L.P.; Salazar, D.M.; Valencia, A.F.; Robalino, D.R.; Barona, A.C.; Alvarez, F.C.; Rodriguez, C.A. Antimicrobial potential of Chlorella algae isolated from stacked waters of the Andean Region of Ecuador. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 151, p. 012040. [Google Scholar]
- Saratale, R.G.; Ponnusamy, V.K.; Jeyakumar, R.B.; Sirohi, R.; Piechota, G.; Shobana, S.; Ashokkumar, V. Microalgae cultivation strategies using cost–effective nutrient sources: Recent updates and progress towards biofuel production. Bioresour. Technol. 2022, 361, 127691. [Google Scholar]
- Abedi, E.; Hashemi, S.M.B. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef]
- Nakase, C.; Zurita, F.; Nani, G.; Reyes, G.; Fernández-Lambert, G.; Cabrera-Hernández, A.; Sandoval, L. Nitrogen removal from domestic wastewater and the development of tropical ornamental plants in partially saturated mesocosm-scale constructed wetlands. Int. J. Environ. Res. Public Health 2019, 16, 4800. [Google Scholar] [CrossRef]
- Packa, V.; Bostan, V.; Furdui, V.I. Analysis of phosphorus species in water. Encycl. Water Sci. Technol. Soc. 2019, 1–14. [Google Scholar] [CrossRef]
- Yu, D.; Ryu, K.; Zhi, S.; Otto, S.J.; Neumann, N.F. Naturalized Escherichia coli in wastewater and the co-evolution of bacterial resistance to water treatment and antibiotics. Front. Microbiol. 2022, 13, 810312. [Google Scholar] [CrossRef]
- da Silva, M.E.R.; Firmino, P.I.M.; de Sousa, M.R.; Dos Santos, A.B. Sequential anaerobic/aerobic treatment of dye-containing wastewaters: Colour and COD removals, and ecotoxicity tests. Appl. Biochem. Biotechnol. 2012, 166, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.W.; Bridgewater, L.; American Public Health Association (Eds.) Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Alruwaili, N.K. Analytical quality by design approach of reverse-phase high-performance liquid chromatography of atorvastatin: Method development, optimization, validation, and the stability-indicated method. Int. J. Anal. Chem. 2021, 2021, 8833900. [Google Scholar] [CrossRef]
- Beal, J.; Farny, N.G.; Haddock-Angelli, T.; Selvarajah, V.; Baldwin, G.S.; Buckley-Taylor, R. Robust estimation of bacterial cell counts from optical density. Commun. Biol. 2020, 3, 512. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Awan, M.O.U.; Akca, G.; Zeb, I.; Amin, B.A.; Ahmad, R.; Nazir, R. Prevalence of diversified antibiotic-resistant bacteria within sanitation related facilities of human populated workplaces in Abbottabad. PLoS ONE 2020, 15, e0233325. [Google Scholar] [CrossRef]
- El-Ashram, S.; Al Nasr, I.; Suo, X. Nucleic acid protocols: Extraction and optimization. Biotechnol. Rep. 2016, 12, 33–39. [Google Scholar] [CrossRef]
- Vu, L.P.; Diehl, C.J.; Casement, R.; Bond, A.G.; Steinebach, C.; Strasek, N.; Gutschow, M. Expanding the Structural Diversity at the Phenylene Core of Ligands for the von Hippel–Lindau E3 Ubiquitin Ligase: Development of Highly Potent Hypoxia-Inducible Factor-1α Stabilizers. J. Med. Chem. 2023, 66, 12776–12811. [Google Scholar] [CrossRef]
- Vlazaki, M.; Rossi, O.; Price, D.J.; McLean, C.; Grant, A.J.; Mastroeni, P.; Restif, O. A data-based mathematical modelling study to quantify the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica during treatment and relapse. J. R. Soc. Interface 2020, 17, 20200299. [Google Scholar] [CrossRef] [PubMed]
- Penru, Y.; Guastalli, A.R.; Esplugas, S.; Baig, S. Application of UV and UV/H2O2 to seawater: Disinfection and natural organic matter removal. J. Photochem. Photobiol. A Chem. 2012, 233, 40–45. [Google Scholar] [CrossRef]
- Yang, R.; Mao, W.; Wang, X.; Zhang, Z.; Wu, J.; Chen, S. Response and adaptation of microbial community in a CANON reactor exposed to an extreme alkaline shock. Archaea 2020, 2020, 8888615. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, K.; Qiang, J.; Pang, H.; Yuan, Y.; An, Y.; Wu, Z. Mainstream nitrogen separation and side-stream removal to reduce discharge and footprint of wastewater treatment plants. Water Res. 2021, 188, 116527. [Google Scholar] [CrossRef]
- Effendi, A.J.; Baashen, M.S.; Hidayat, S. Nutrient Recovery from Organic-Rich Wastewater through Struvite Precipitation using Air Cathode Electrocoagulation Technology. Air Soil Water Res. 2022, 15, 11786221221087989. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.H.; Sun, J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef] [PubMed]
- Fontalvo, N.P.M.; Gamero, W.B.M.; Ardila, H.A.M.; Gonzalez, A.F.P.; Ramos, C.G.; Muñoz, A.E.P. Removal of nitrogenous compounds from municipal wastewater using a bacterial consortium: An opportunity for more sustainable water treatments. Water Air Soil Pollut. 2022, 233, 339. [Google Scholar] [CrossRef]
- Nseabasi-Maina, N.; Okpokwasili, G.C.; Agwa, O. Heavy metals tolerance in bacteria from industrial wastewater. GSC Biol. Pharm. Sci. 2021, 15, 307–316. [Google Scholar] [CrossRef]
- Lopes, T.R.; Periotto, F.; Pletsch, A.L. Bacterial resistance in sanitary sewage sludge in different treatment systems. Manag. Environ. Qual. Int. J. 2017, 28, 32–42. [Google Scholar] [CrossRef]
- Amsalu, A.; Sapula, S.A.; De Barros Lopes, M.; Hart, B.J.; Nguyen, A.H.; Drigo, B.; Venter, H. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: A case study in the development of multidrug resistance in environmental hotspots. Microorganisms 2020, 8, 1647. [Google Scholar] [CrossRef]
- Pooja, K.; Priyanka, V.; Rao, B.C.S.; Raghavender, V. Cost-effective treatment of sewage wastewater using microalgae Chlorella vulgaris and its application as bio-fertilizer. Energy Nexus 2022, 7, 100122. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Sattayawat, P.; Yunus, I.S.; Noirungsee, N.; Mukjang, N.; Pathom-Aree, W.; Pekkoh, J.; Pumas, C. Synthetic biology-based approaches for microalgal bio-removal of heavy metals from wastewater effluents. Front. Environ. Sci. 2021, 9, 778260. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, L.; Mao, Y.; Lnong, X.; Wei, Q.; Su, J.; Chen, S.; Wei, Z.; Wang, L.; Liao, X.; et al. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int. J. Biol. Macromol. 2024, 279, 134788. [Google Scholar] [CrossRef]
- Gong, W.; Bai, L.; Liang, H. Membrane-based technologies for removing emerging contaminants in urban water systems: Limitations, successes, and future improvements. Desalination 2024, 590, 117974. [Google Scholar] [CrossRef]
Samples | pH | TN (mg/L) | TP (mg/L) | BOD (mg/L) | COD (mg/L) | Heavy Metals (mg/L) | Bacteria (CFU/mL) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Fe | Cd | Ni | Zn | Pb | |||||||
Domestic WW | 6.1 | 24.5 | 8.8 | 262.8 | 344.1 | 0.8 | 1.0 | 0.2 | 0.5 | 1.3 | 0.8 | 9.80 × 108 |
Hospital WW | 6.0 | 29.8 | 15.3 | 169.4 | 213 | 0.4 | 2.5 | 0.8 | 0.4 | 1.4 | 0.5 | 1.21 × 109 |
Industrial WW | 5.9 | 32.7 | 27.3 | 217.3 | 310.9 | 3.0 | 3.0 | 0.2 | 0.3 | 0.9 | 1.0 | 8.38 × 106 |
Municipal WW | 6.1 | 26.7 | 25.1 | 148.7 | 296.9 | 1.4 | 1.2 | 0.9 | 0.6 | 1.4 | 0.5 | 1.20 × 109 |
Species | Origin | AMP | CEF | AMI | CIP | ERY | AZI | CLA | SUL | TET | % Homology | Accession No. | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DW | HW | MW | IW | ||||||||||||
Providencia sp. (RBH01) | 100% | PP758204 | |||||||||||||
Escherichia coli (BBD02) | 100% | PP758206 | |||||||||||||
Enterobacter sp. (GBD06) | 99.4% | PP758209 | |||||||||||||
Enterococcus faecium (PBI08) | 100% | PP758212 | |||||||||||||
Enterococcus faecalis (SBH41) | 100% | PP758213 | |||||||||||||
Streptococcus pneumoniae (UBM04) | 100% | PP758215 | |||||||||||||
Legionella spp. (SBM33) | 100% | PP758216 | |||||||||||||
Proteus mirabilis (OBM09) | 99.1% | PP758264 | |||||||||||||
Serratia marcescens (LBM32) | 100% | PP758270 | |||||||||||||
Morganella morganii (SBH02) | 100% | PP758272 | |||||||||||||
Klebsiella pneumoniae (GBM12) | 100% | PP758273 | |||||||||||||
Pseudomonas aeruginosa (NBH16) | 100% | PP758274 | |||||||||||||
Acinetobacter baumannii (YBH19) | 99.9% | PP758276 | |||||||||||||
Staphylococcus aureus (HBM13) | 100% | PP758277 | |||||||||||||
Salmonella enterica (DBH21) | 100% | PP758279 | |||||||||||||
Shigella dysenteriae (TBH21) | 100% | PP758346 | |||||||||||||
Bacillus cereus (WBI32) | 100% | PP758350 | |||||||||||||
Enterobacter cloacae (KBD27) | 100% | PP758353 | |||||||||||||
Yersinia enterocolitica (ABM43) | 100% | PP758369 | |||||||||||||
Aeromonas caviae (EBHO7) | 99.8% | PP758371 | |||||||||||||
Mycobacterium sp. (VBM05) | 100% | PP758372 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, R.; Kazmi, S.F.; Irshad, M.; Bilal, M.; Hafeez, F.; Ahmed, J.; Shaheedi, S.; Nazir, R. Microalgae-Assisted Treatment of Wastewater Originating from Varied Sources, Particularly in the Context of Heavy Metals and Antibiotic-Resistant Bacteria. Water 2024, 16, 3305. https://doi.org/10.3390/w16223305
Rehman R, Kazmi SF, Irshad M, Bilal M, Hafeez F, Ahmed J, Shaheedi S, Nazir R. Microalgae-Assisted Treatment of Wastewater Originating from Varied Sources, Particularly in the Context of Heavy Metals and Antibiotic-Resistant Bacteria. Water. 2024; 16(22):3305. https://doi.org/10.3390/w16223305
Chicago/Turabian StyleRehman, Rabia, Syeda Fazoon Kazmi, Muhammad Irshad, Muhammad Bilal, Farhan Hafeez, Jamil Ahmed, Shabina Shaheedi, and Rashid Nazir. 2024. "Microalgae-Assisted Treatment of Wastewater Originating from Varied Sources, Particularly in the Context of Heavy Metals and Antibiotic-Resistant Bacteria" Water 16, no. 22: 3305. https://doi.org/10.3390/w16223305
APA StyleRehman, R., Kazmi, S. F., Irshad, M., Bilal, M., Hafeez, F., Ahmed, J., Shaheedi, S., & Nazir, R. (2024). Microalgae-Assisted Treatment of Wastewater Originating from Varied Sources, Particularly in the Context of Heavy Metals and Antibiotic-Resistant Bacteria. Water, 16(22), 3305. https://doi.org/10.3390/w16223305