New Combinatorial Formulas for Cluster Monomials of Type $A$ Quivers

  • Kyungyong Lee
  • Li Li
  • Ba Nguyen
Keywords: Cluster algebra, Cluster monomials

Abstract

Lots of research focuses on the combinatorics behind various bases of cluster algebras. This paper studies the natural basis of a type $A$ cluster algebra, which consists of all cluster monomials. We introduce a new kind of combinatorial formula for the cluster monomials in terms of the so-called globally compatible collections. We give bijective proofs of these formulas by comparing with the well-known combinatorial models of the $T$-paths and of the perfect matchings in a snake diagram. For cluster variables of a type $A$ cluster algebra, we give a bijection that relates our new formula with the theta functions constructed by Gross, Hacking, Keel and Kontsevich.

Published
2017-06-16
Article Number
P2.42