Citation: |
[1] |
C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of almost perfect nonlinear trinomials and multinomials, Finite Fields Appl., 14 (2008), 703-714.doi: 10.1016/j.ffa.2007.11.002. |
[2] |
E. Byrne, M. Greferath and T. Honold, Ring geometries, two-weight codes and strongly regular graphs, Des. Codes Crypt., 48 (2008), 1-16.doi: 10.1007/s10623-007-9136-8. |
[3] |
E. Byrne, M. Greferath, A. Kohnert and V. Skachek, New bounds for codes over finite Frobenius rings, Des. Codes Crypt., 57 (2010), 169-179.doi: 10.1007/s10623-009-9359-y. |
[4] |
E. Byrne, M. Greferath and M. E. O'Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Crypt., 42 (2007), 289-301.doi: 10.1007/s10623-006-9035-4. |
[5] |
E. Byrne and A. Sneyd, Constructions of two-weight codes over finite rings, in "Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010),'' Budapest, July, 2010. |
[6] |
C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Crypt., 15 (1998), 125-156.doi: 10.1023/A:1008344232130. |
[7] |
C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2013.doi: 10.1109/TIT.2005.847722. |
[8] |
I. Constantinescu and W. Heise, A metric for codes over residue class rings of integers (in Russian), Problemy Peredachi Informatsii, 33 (1997), 22-28; translation in Problems Inform. Transmission, 33 (1997), 208-213. |
[9] |
P. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math., 3 (1972), 47-64.doi: 10.1016/0012-365X(72)90024-6. |
[10] |
M. Greferath, A. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes, J. Algebra Appl., 3 (2004), 247-272.doi: 10.1142/S0219498804000873. |
[11] |
M. Greferath and M. E. O'Sullivan, On bounds for codes over Frobenius rings under homogeneous weights, Discrete Math., 289 (2004), 11-24.doi: 10.1016/j.disc.2004.10.002. |
[12] |
M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams equivalence theorem, J. Combin. Theory A, 92 (2000), 17-28.doi: 10.1006/jcta.1999.3033. |
[13] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154. |
[14] |
R. C. Heimiller, Phase shift pulse codes with good periodic correlation properties, IRE Trans. Inform. Theory, IT-7 (1961), 254-257.doi: 10.1109/TIT.1961.1057655. |
[15] |
T. Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel), 76 (2001), 406-415. |
[16] |
T. Honold, Further results on homogeneous two-weight codes, in "Proceedings of Optimal Codes and Related Topics,'' Bulgaria, (2007). |
[17] |
T. Y. Lam, "Lectures on Modules and Rings,'' Springer-Verlag, 1999. |
[18] |
B. R. McDonald, Finite rings with identity, in "Pure and Applied Mathematics,'' Marcel Dekker, Inc., New York, (1974), 429. |
[19] |
R. Raghavendran, Finite associative rings, Compositio Math., 21 (1969), 195-229. |
[20] |
J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inform. Theory, 52 (2006), 712-717.doi: 10.1109/TIT.2005.862125. |