\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Algebraic reduction for the Golden Code

Abstract / Introduction Related Papers Cited by
  • We introduce a new right preprocessing approach, called algebraic reduction, for the decoding of algebraic space-time block codes which are designed using maximal orders in division algebras. Unlike existing lattice-reduction aided decoding techniques, algebraic reduction exploits the multiplicative structure of the code. Its principle is to absorb part of the channel into the code, by approximating the channel matrix with a unit of the maximal order of the corresponding algebra.
        In the case of $2 \times 2$ space-time codes, we propose a low-complexity algorithm to approximate a channel with a unit, and apply it to the Golden Code. Simulation results for the Golden Code evidence that algebraic reduction has the same performance of LLL reduction but significantly lower complexity.
        We also show that for MIMO systems with $n$ receive and $n$ transmit antennas, algebraic reduction attains the receive diversity when followed by a simple ZF detection. However, establishing the approximation algorithm for higher dimensional codes remains an open problem.
    Mathematics Subject Classification: Primary: 94B35; Secondary: 16H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J.-C. Belfiore, G. Rekaya and E. Viterbo, The golden code: a $2 \times 2$ full-rate space-time code with non-vanishing determinants, IEEE Trans. Inform. Theory, 51 (2005), 1432-1436.doi: 10.1109/TIT.2005.844069.

    [2]

    J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geometriae Dedicata, 16 (1984), 123-148.doi: 10.1007/BF00146825.

    [3]

    C. Corrales, E. Jespers, G. Leal and A. del Rio, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math., 186 (2004), 498-524.doi: 10.1016/j.aim.2003.07.015.

    [4]

    M. O. Damen, H. El Gamal and G. Caire, MMSE-GDFE lattice decoding for solving under-determined linear systems with integer unknowns, in "Proceedings of ISIT 2004,'' (2004), Chicago, USA.

    [5]

    A. Edelman, "Eigenvalues and Condition Numbers of Random Matrices,'' Ph.D thesis, MIT, 1989.

    [6]

    J. Elstrodt, F. Grunewald and J. Mennicke, "Groups Acting on Hyperbolic Space,'' Springer, 1998.

    [7]

    D. Epstein and C. Petronio, An exposition of Poincaré's polyhedron theorem, L'Enseignement Mathématique, 40 (1994), 113-170.

    [8]

    Y. H. Gan, C. Ling and W. H. Mow, Complex lattice reduction algorithm for low-complexity MIMO detection, IEEE Trans. Signal Process., 57 (2009), 2701-2710.doi: 10.1109/TSP.2009.2016267.

    [9]

    N. R. Goodman, The distribution of the determinant of a complex Wishart distributed matrix, Ann. Math. Statist., 34 (1963), 178-180.doi: 10.1214/aoms/1177704251.

    [10]

    J. Jaldén and P. Elia, DMT optimality of LR-aided linear decoders for a general class of channels, lattice designs, and system models, IEEE Trans. Inform. Theory, 56 (2010), 4765-4780.doi: 10.1109/TIT.2010.2059493.

    [11]

    J. Jaldén and B. Ottersten, On the Complexity of Sphere Decoding In Digital Communications, IEEE Trans. Signal Process., 53 (2005), 1474-1484.doi: 10.1109/TSP.2005.843746.

    [12]

    E. Kleinert, "Units of Classical Orders: A Survey,'' L'Enseignement Mathématique, 40 (1994), 205-248.

    [13]

    E. Kleinert, "Units in Skew-Fields,'' Birkäuser, Basel, 2000.

    [14]

    L. Luzzi, G. Rekaya-Ben Othman, J.-C. Belfiore and E. Viterbo, Golden space-time block coded modulation, IEEE Trans. Inform. Theory, 55 (2009), 584-597.doi: 10.1109/TIT.2008.2009846.

    [15]

    C. Maclachlan and A. W. Reid, "The Arithmetic of Hyperbolic 3-Manifolds,'' Springer, 2003.

    [16]

    A. D. Murugan, H. El Gamal, M. O. Damen and G. Caire, A unified framework for tree search decoding: rediscovering the sequential decoder, IEEE Trans. Inform. Theory, 52 (2006), 933-953.doi: 10.1109/TIT.2005.864418.

    [17]

    F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time block codes, IEEE Trans. Inform. Theory, 52 (2006), 3885-3902.doi: 10.1109/TIT.2006.880010.

    [18]

    A. Page, "Computing Fundamental Domains for Arithmetic Kleinian Groups,'' Master thesis, Université Paris 7 - Diderot, 2010.

    [19]

    J. Proakis, "Digital Communications,'' McGraw-Hill, 2001.

    [20]

    K. Raj Kumar, G. Caire and A. L. Moustakas, Asymptotic performance of linear receivers in MIMO fading channels, IEEE Trans. Inform. Theory, 55 (2009), 4398-4418.doi: 10.1109/TIT.2009.2027544.

    [21]

    G. Rekaya, J.-C. Belfiore and E. Viterbo, A very efficient lattice reduction tool on fast fading channels, in "Proceedings of ISITA 2004,'' (2004), Parma, Italy.

    [22]

    B. A. Sethuraman, B. Sundar Rajan and V. Shashidar, Full-diversity, high-rate space-time block codes from division algebras, IEEE Trans. Inform. Theory, 49 (2003), 2596-2616.doi: 10.1109/TIT.2003.817831.

    [23]

    R. G. Swan, Generators and relations for certain special linear groups, Adv. Math., 6 (1971), 1-77.doi: 10.1016/0001-8708(71)90027-2.

    [24]

    M. Taherzadeh, A. Mobasher and A. K. Khandani, LLL reduction achieves the receive diversity in MIMO decoding, IEEE Trans. Inform. Theory, 53 (2007), 4801-4805.doi: 10.1109/TIT.2007.909169.

    [25]

    R. Vehkalahti, C. Hollanti, J. Lahtonen and K. Ranto, On the densest MIMO lattices from cyclic division algebras, IEEE Trans. Inform. Theory, 55 (2009), 3751-3780.doi: 10.1109/TIT.2009.2023713.

    [26]

    M.-F. Vignéras, "Arithmétique des Algèbres de Quaternions,'' Springer-Verlag, 1980.

    [27]

    E. W. WeissteinCircle-Circle Intersection, from MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/Circle-CircleIntersection.html

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return