Citation: |
[1] |
S. Z. Budĭsin, P. Spasojević, Paraunitary generation/correlation of QAM complementary sequence pairs, Cryptogr. Commun., 6 (2014), 59-102.doi: 10.1007/s12095-013-0087-9. |
[2] |
C.-Y. Chen, C.-H. Wang, and C.-C. Chao, Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM, in Int. Symp. Appl. Algebra Algebr. Algor. Error-Corr. Codes, Springer, Berlin, 2006, 317-327.doi: 10.1007/11617983_31. |
[3] |
J. A. Davis and J. Jedwab, Peak-to-mean power control for OFDM, Golay complementary sequences, and Reed-Muller codes, IEEE Trans. Inform. Theory, 45 (1999), 2397-2417.doi: 10.1109/18.796380. |
[4] |
F. Fiedler, J. Jedwab and M. G. Parker, A framework for the construction of Golay sequences, IEEE Trans. Inform. Theory, 54 (2008), 3113-3129.doi: 10.1109/TIT.2008.924667. |
[5] |
F. Fiedler, J. Jedwab and M. G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences, J. Combin. Theory Ser. A, 115 (2008), 753-776.doi: 10.1016/j.jcta.2007.10.001. |
[6] |
M. J. E. Golay, Complementary series, IEEE Trans. Inform. Theory, 7 (1961), 82-87. |
[7] |
S. Litsyn, Peak Power Control in Multi-carrier Communications, Cambridge Univ. Press, 2007. |
[8] |
M. G. Parker and C. Riera, Generalised complementary arrays, IMA Int. Conf. Crypt. Coding, Springer, Berlin, 2011, 41-60.doi: 10.1007/978-3-642-25516-8_4. |
[9] |
M. G. Parker and C. Tellambura, Golay-Davis-Jedwab complementary sequences and Rudin-Shapiro constructions, in Int. Symp. Inform. Theory, 2001, 302. |
[10] |
M. G. Parker and C. Tellambura, A construction for binary sequence sets with low peak-to-average power ratio, Reports in Informatics, Univ. Bergen, 2003. |
[11] |
K. G. Paterson, Generalized Reed-Muller codes and power control in OFDM modulation, IEEE Trans. Inform. Theory, 46 (2000), 104-120.doi: 10.1109/18.817512. |
[12] |
K.-U. Schmidt, On cosets of the generalized first-order Reed-Muller code with low PMEPR, IEEE Trans. Inform. Theory, 52 (2006), 3220-3232.doi: 10.1109/TIT.2006.876252. |
[13] |
K.-U. Schmidt, Complementary sets, generalized Reed-Muller codes, and power control for OFDM, IEEE Trans. Inform. Theory, 53 (2007), 808-814.doi: 10.1109/TIT.2006.889723. |
[14] |
T. E. Stinchcombe, Aperiodic autocorrelations of length $2^m$ sequences, complementarity, and power control for OFDM, Ph.D. thesis, Univ. London, 2000. |
[15] |
Z. Wang, M. G. Parker, G. Gong and G. Wu, On the PMEPR of the binary Golay sequences of length $2^n$, IEEE Trans. Inform. Theory, 60 (2014), 2391-2398.doi: 10.1109/TIT.2014.2300867. |
[16] |
Z. Wang, G. Wu and H. Li, Improved PMEPR bound on near-complementary sequences constructed by Yu and Gong, Electr. Lett., 49 (2013), 73-75. |
[17] |
G. Wu and M. G. Parker, A complementary construction using mutually unbiased bases, Crypt. Commun., 6 (2014), 3-25.doi: 10.1007/s12095-013-0095-9. |
[18] |
G. Wu, Y. Zhang and Z. Wang, Construction of near-complementary sequences with low PMEPR for peak power control in OFDM, IEICE Trans. Fundam., E95-A (2012), 1881-1887. |
[19] |
N. Y. Yu and G. Gong, Near-complementary sequences with low PMEPR for peak power control in multicarrier communications, IEEE Trans. Inform. Theory, 57 (2011), 505-513.doi: 10.1109/TIT.2010.2090230. |