[1]
|
C. Bracken and G. Leander, A highly nonlinearity differentially 4-uniform power mapping that permutes fields of even degree, Finite Fields Appl., 16 (2010), 231-242.
doi: 10.1016/j.ffa.2010.03.001.
|
[2]
|
C. Bracken, C. H. Tan and Y. Tan, Binomial differentially 4-uniform permutations with high nonlinearity, Finite Fields Appl., 18 (2012), 537-546.
doi: 10.1016/j.ffa.2011.11.006.
|
[3]
|
K. A. Browning, J. F. Dillon, M. T. McQuistan and A. J. Wolfe, An APN permutation in dimension six, Finite Fields: Theory and Applications, Contemp. Math., Amer. Math. Soc., Providence, RI, 518 (2010), 33-42.
doi: 10.1090/conm/518/10194.
|
[4]
|
C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.
doi: 10.1023/A:1008344232130.
|
[5]
|
C. Carlet, D. Tang, X. Tang and Q. Liao, New construction of differentially 4-uniform bijections, In: Proceedings of the 9th International Conference on Information Security and Cryptology, Inscrypt 2013, Lecture Notes in Computer Science, New York: Springer, 8567 (2014), 22-38.
|
[6]
|
F. Chabaud and S. Vadenay, Links between differential and linear cryptanalysis, In: Advances in Cryptology-EUROCRYPT'94. Lecture Notes in Computer Science, Berlin-Heidelberg: Springer, 950 (1995), 356-365.
doi: 10.1007/BFb0053450.
|
[7]
|
S. H. Fu and X. T. Feng, Involutory differentially 4-uniform permutations from known constructions, Des. Codes Cryptogr., 87 (2019), 31-56.
doi: 10.1007/s10623-018-0482-5.
|
[8]
|
R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inf. Theory, 14 (1968), 154-156.
doi: 10.1109/TIT.1968.1054106.
|
[9]
|
T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes, Inf. Control, 18 (1971), 369-394.
doi: 10.1016/S0019-9958(71)90473-6.
|
[10]
|
G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inf. Theory, 36 (1990), 686-692.
doi: 10.1109/18.54892.
|
[11]
|
Y. Q. Li and M. S. Wang, Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^2m}$ from quadratic APN permutations over $\mathbb{F}_{2^{2m+1}}$, Des. Codes Cryptogr., 72 (2014), 249-264.
doi: 10.1007/s10623-012-9760-9.
|
[12]
|
Y. Li, M. Wang and Y. Yu, Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$ from the inverse function revisted, http://eprint.iacr.org/2013/731.
|
[13]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North Holland, 1977.
|
[14]
|
K. Nyberg, Differentially uniform mappings for cryptography, In: Advances in Cryptology-EUROCRYPT' 93, Lecture Notes in Computer Science, Berlin-Heidelberg: Springer, 765 (1994), 55-64.
doi: 10.1007/3-540-48285-7_6.
|
[15]
|
J. Peng, C. H. Tan and Q. C. Wang, A new family of differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$ for odd $k$, Sci. China Math., 59 (2016), 1221-1234.
doi: 10.1007/s11425-016-5122-9.
|
[16]
|
J. Peng and C. Tan, New explicit constructions of differentially 4-uniform permutations via special partitions of $\mathbb{F}_{2^2k}$, Finite Fields Appl., 40 (2016), 73-89.
doi: 10.1016/j.ffa.2016.03.003.
|
[17]
|
J. Peng, C. Tan and Q. Wang, New secondary constructions of differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$, Int. J. Comput. Math., 94 (2017), 1670-1693.
doi: 10.1080/00207160.2016.1227433.
|
[18]
|
J. Peng and C. Tan, New differentially 4-uniform permutations by modifying the inverse function on subfields, Cryptogr. Commun., 9 (2017), 363-378.
doi: 10.1007/s12095-016-0181-x.
|
[19]
|
L. J. Qu, Y. Tan, C. H. Tan and C. Li, Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$ via the switching method, IEEE Trans. Inf. Theory, 59 (2013), 4675-4686.
doi: 10.1109/TIT.2013.2252420.
|
[20]
|
L. J. Qu, Y. Tan, C. Li and G. Gong, More constructions of differentially 4-uniform permutations on $\mathbb{F}_{2^2k}$, Des. Codes Cryptogr., 78 (2016), 391-408.
doi: 10.1007/s10623-014-0006-x.
|
[21]
|
D. Tang, C. Carlet and X. Tang, Differentially 4-uniform bijections by permuting the inverse function, Des. Codes Cryptogr., 77 (2015), 117-141.
doi: 10.1007/s10623-014-9992-y.
|
[22]
|
G. K. Xu and X. W. Cao, Constructing new piecewise differentially 4-uniform permutations from known APN functions, Int. J. Found. Comput., 26 (2015), 599-609.
doi: 10.1142/S0129054115500331.
|
[23]
|
Y. Xu, Y. Li, C. Wu and F. Liu, On the construction of differentially 4-uniform involutions, Finite Fields Appl., 47 (2017), 309-329.
doi: 10.1016/j.ffa.2017.06.004.
|
[24]
|
Z. B. Zha, L. Hu and S. W. Sun, Constructing new differentially 4-uniform permutations from the inverse function, Finite Fields Appl., 25 (2014), 64-78.
doi: 10.1016/j.ffa.2013.08.003.
|
[25]
|
Z. B. Zha, L. Hu, S. W. Sun and J. Y. Shan, Further results on differentially 4-uniform permutations over $\mathbb{F}_{2^2m}$, Sci. China Math., 58 (2015), 1577-1588.
doi: 10.1007/s11425-015-4996-2.
|