\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two classes of differentially 4-uniform permutations over $ \mathbb{F}_{2^{n}} $ with $ n $ even

  • * Corresponding author: Longjiang Qu

    * Corresponding author: Longjiang Qu

This research is supported by the National Natural Science Foundation of China (11601177, 61722213, 11771007 and 11701336), Anhui Provincial Natural Science Foundation (1608085QA05) and the Foundation for Distinguished Young Talents in Higher Education of Anhui Province of China (gxyqZD2016258)

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • A construction of differentially 4-uniform permutations by modifying the values of the inverse function on a union of some cosets of a multiplication subgroup of $ \mathbb{F}_{2^n}^* $ was given by Peng et al. in [15]. In this paper, we extend their results to differentially 4-uniform permutations whose values are different from the values of the inverse function on some subsets of the unit circle of $ \mathbb{F}_{2^n} $ or on the multiplication group of some subfield of $ \mathbb{F}_{2^n} $. Moreover, it has been checked by the Magma software that some permutations in the resulted differentially 4-uniform permutations are CCZ-inequivalent to the known functions for small $ n $.

    Mathematics Subject Classification: Primary: 94A60, 11T71; Secondary: 06E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Differential spectrum and nonlinearity of functions in Theorem 3.2 over $ \mathbb{F}_{2^{10}} $

    $ U $ Differential spectrum Nonlinearity Ref.
    $ U_0 $ [526419, 518490, 2643] 478 [15]
    $ U_1 $ [528021, 515286, 4245] 476 This paper
    $ U_2 $ [529605, 512118, 5829] 474 This paper
    $ U_3 $ [531171, 508986, 7395] 474 This paper
    $ U_4 $ [532719, 505890, 8943] 472 This paper
    $ U_5 $ [534249, 502830, 10473] 472 This paper
    $ U_6 $ [535761, 499806, 11985] 470 This paper
    $ U_7 $ [537255, 496818, 13479] 468 This paper
    $ U_8 $ [538731, 493866, 14955] 466 This paper
    $ U_9 $ [540189, 490950, 16413] 464 This paper
    $ \mathcal{U} $ [541629, 488070, 17853] 462 This paper
     | Show Table
    DownLoad: CSV

    Table 2.  Differential spectrum and nonlinearity of functions in Section 4 over $ \mathbb{F}_{2^{n}} $

    $ n $ $ m $ $ f $ $ \gamma $ Differential spectrum Nonlinearity
    12 4 Theorem 4.4 $ \xi^{273} $ [8420895, 8317890, 34335] 1978
    12 4 Theorem 4.4 $ \xi^{819} $ [8422155, 8315370, 35595] 1978
    12 4 Theorem 4.4 $ \omega $ [8421255, 8317170, 34695] 1980
    12 4 Theorem 4.4 $ \xi^{1638} $ [8422155, 8315370, 35595] 1980
    12 4 Theorem 4.4 $ \xi^{1911} $ [8420895, 8317890, 34335] 1980
    6 3 Theorem 4.8 $ \eta^{9} $ [2226, 1596,210] 22
    8 4 Theorem 4.8 $ \omega $ [34515, 28890, 1875] 108
     | Show Table
    DownLoad: CSV
  • [1] C. Bracken and G. Leander, A highly nonlinearity differentially 4-uniform power mapping that permutes fields of even degree, Finite Fields Appl., 16 (2010), 231-242.  doi: 10.1016/j.ffa.2010.03.001.
    [2] C. BrackenC. H. Tan and Y. Tan, Binomial differentially 4-uniform permutations with high nonlinearity, Finite Fields Appl., 18 (2012), 537-546.  doi: 10.1016/j.ffa.2011.11.006.
    [3] K. A. BrowningJ. F. DillonM. T. McQuistan and A. J. Wolfe, An APN permutation in dimension six, Finite Fields: Theory and Applications, Contemp. Math., Amer. Math. Soc., Providence, RI, 518 (2010), 33-42.  doi: 10.1090/conm/518/10194.
    [4] C. CarletP. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.  doi: 10.1023/A:1008344232130.
    [5] C. Carlet, D. Tang, X. Tang and Q. Liao, New construction of differentially 4-uniform bijections, In: Proceedings of the 9th International Conference on Information Security and Cryptology, Inscrypt 2013, Lecture Notes in Computer Science, New York: Springer, 8567 (2014), 22-38.
    [6] F. Chabaud and S. Vadenay, Links between differential and linear cryptanalysis, In: Advances in Cryptology-EUROCRYPT'94. Lecture Notes in Computer Science, Berlin-Heidelberg: Springer, 950 (1995), 356-365. doi: 10.1007/BFb0053450.
    [7] S. H. Fu and X. T. Feng, Involutory differentially 4-uniform permutations from known constructions, Des. Codes Cryptogr., 87 (2019), 31-56.  doi: 10.1007/s10623-018-0482-5.
    [8] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inf. Theory, 14 (1968), 154-156.  doi: 10.1109/TIT.1968.1054106.
    [9] T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes, Inf. Control, 18 (1971), 369-394.  doi: 10.1016/S0019-9958(71)90473-6.
    [10] G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inf. Theory, 36 (1990), 686-692.  doi: 10.1109/18.54892.
    [11] Y. Q. Li and M. S. Wang, Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^2m}$ from quadratic APN permutations over $\mathbb{F}_{2^{2m+1}}$, Des. Codes Cryptogr., 72 (2014), 249-264.  doi: 10.1007/s10623-012-9760-9.
    [12] Y. Li, M. Wang and Y. Yu, Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$ from the inverse function revisted, http://eprint.iacr.org/2013/731.
    [13] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North Holland, 1977.
    [14] K. Nyberg, Differentially uniform mappings for cryptography, In: Advances in Cryptology-EUROCRYPT' 93, Lecture Notes in Computer Science, Berlin-Heidelberg: Springer, 765 (1994), 55-64. doi: 10.1007/3-540-48285-7_6.
    [15] J. PengC. H. Tan and Q. C. Wang, A new family of differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$ for odd $k$, Sci. China Math., 59 (2016), 1221-1234.  doi: 10.1007/s11425-016-5122-9.
    [16] J. Peng and C. Tan, New explicit constructions of differentially 4-uniform permutations via special partitions of $\mathbb{F}_{2^2k}$, Finite Fields Appl., 40 (2016), 73-89.  doi: 10.1016/j.ffa.2016.03.003.
    [17] J. PengC. Tan and Q. Wang, New secondary constructions of differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$, Int. J. Comput. Math., 94 (2017), 1670-1693.  doi: 10.1080/00207160.2016.1227433.
    [18] J. Peng and C. Tan, New differentially 4-uniform permutations by modifying the inverse function on subfields, Cryptogr. Commun., 9 (2017), 363-378.  doi: 10.1007/s12095-016-0181-x.
    [19] L. J. QuY. TanC. H. Tan and C. Li, Constructing differentially 4-uniform permutations over $\mathbb{F}_{2^2k}$ via the switching method, IEEE Trans. Inf. Theory, 59 (2013), 4675-4686.  doi: 10.1109/TIT.2013.2252420.
    [20] L. J. QuY. TanC. Li and G. Gong, More constructions of differentially 4-uniform permutations on $\mathbb{F}_{2^2k}$, Des. Codes Cryptogr., 78 (2016), 391-408.  doi: 10.1007/s10623-014-0006-x.
    [21] D. TangC. Carlet and X. Tang, Differentially 4-uniform bijections by permuting the inverse function, Des. Codes Cryptogr., 77 (2015), 117-141.  doi: 10.1007/s10623-014-9992-y.
    [22] G. K. Xu and X. W. Cao, Constructing new piecewise differentially 4-uniform permutations from known APN functions, Int. J. Found. Comput., 26 (2015), 599-609.  doi: 10.1142/S0129054115500331.
    [23] Y. XuY. LiC. Wu and F. Liu, On the construction of differentially 4-uniform involutions, Finite Fields Appl., 47 (2017), 309-329.  doi: 10.1016/j.ffa.2017.06.004.
    [24] Z. B. ZhaL. Hu and S. W. Sun, Constructing new differentially 4-uniform permutations from the inverse function, Finite Fields Appl., 25 (2014), 64-78.  doi: 10.1016/j.ffa.2013.08.003.
    [25] Z. B. ZhaL. HuS. W. Sun and J. Y. Shan, Further results on differentially 4-uniform permutations over $\mathbb{F}_{2^2m}$, Sci. China Math., 58 (2015), 1577-1588.  doi: 10.1007/s11425-015-4996-2.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(2545) PDF downloads(651) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return