\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $

This work has been partially supported by the Spanish grant TIN2016-77918-P (AEI/FEDER, UE)

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • We introduce the Hadamard full propelinear codes that factorize as direct product of groups such that their associated group is $ C_{2t}\times C_2 $. We study the rank, the dimension of the kernel, and the structure of these codes. For several specific parameters we establish some links from circulant Hadamard matrices and the nonexistence of the codes we study. We prove that the dimension of the kernel of these codes is bounded by $ 3 $ if the code is nonlinear. We also get an equivalence between circulant complex Hadamard matrix and a type of Hadamard full propelinear code, and we find a new example of circulant complex Hadamard matrix of order $ 16 $.

    Mathematics Subject Classification: Primary: 5B, 5E, 94B.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 2.  Allowable values of the rank $ r $, and dimension of the kernel $ k $ for nonlinear $ \operatorname{HFP}(\cdot,\cdot,\cdot) $-codes of length $ 4t $

    $ \operatorname{HFP}(\cdot,\cdot,\cdot) $ $ t $ $ r $ $ k $
    $ (4t_ \mathbf{u},2) $ even $ \leq 2t $ $ 1 $
    $ (2t,2,2_ \mathbf{u}) $ even square $ \leq 2t $ $ 1,2,3 $
    $ (2t,4_ \mathbf{u}) $ even $ \leq 2t $ $ 1,2,3 $
    $ (t,Q_ \mathbf{u}) $ odd $ 4t-1 $ $ 1 $
     | Show Table
    DownLoad: CSV

    Table 1.  Rank and dimension of the kernel of Hadamard full propelinear codes with associated group $ C_{2t} \times C_2 $. Symbol x means that the non-existence was checked with Magma by exhaustive search, symbol $\checkmark$ means that the non-existence was proved analytically, and "-" means that the code does not have $ C_{2t}\times C_2 $ as associated group. When the values for the rank and the dimension of the kernel appears in a box it means that they are the only values for that box

    t $ (4t_ \mathbf{u},2) $ $ (2t,2,2_ \mathbf{u}) $ $ (2t,4_ \mathbf{u}) $ $ (t,Q_ \mathbf{u}) $
    $ r $ $ k $ $ r $ $ k $ $ r $ $ k $ $ r $ $ k $
    1 3 3 3 3 3 3 x x
    2 4 4 $\checkmark$ $\checkmark$ 4 4 - -
    3 $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 11 1
    4 x x 5 5 7 2 - -
    6 3
    5 $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 19 1
    6 x x $\checkmark$ $\checkmark$ x x - -
    7 $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 27 1
    8 x x $\checkmark$ $\checkmark$ 11 2 - -
    13 1
    9 $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 35 1
    10 x x $\checkmark$ $\checkmark$ x x - -
     | Show Table
    DownLoad: CSV
  • [1] V. ÁlvarezF. Gudiel and M. B. Güemes, On $\mathbb{Z}_t\times \mathbb{Z}_2^2$-cocyclic Hadamard matrices, J. Combin. Des., 23 (2015), 352-368.  doi: 10.1002/jcd.21406.
    [2] K. T. ArasuW. de Launey and S. L. Ma, On circulant complex Hadamard matrices, Des. Codes Cryptogr., 25 (2002), 123-142.  doi: 10.1023/A:1013817013980.
    [3] E. F. AssmusJr and  J. D. KeyDesigns and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.
    [4] I. BaileraJ. Borges and J. Rifà, About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and kernel, Electron. Notes Discret. Math., 54 (2016), 319-324.  doi: 10.1016/j.endm.2016.09.055.
    [5] A. Baliga and K. J. Horadam, Cocyclic Hadamard matrices over $ {\mathbb{Z}}_t \times {\mathbb{Z}}_2^2$, Australas. J. Combin., 11 (1995), 123-134. 
    [6] S. Barrera Acevedo and H. Dietrich, Perfect sequences over the quaternions and $(4n, 2, 4n, 2n)$-relative difference sets in $C_n \times Q_8$, Cryptogr. Commun., 10 (2018), 357-368.  doi: 10.1007/s12095-017-0224-y.
    [7] J. BorgesI. Y. MogilnykhJ. Rifà and F. I. Solov'eva, Structural properties of binary propelinear codes, Adv. Math. Commun., 6 (2012), 329-346.  doi: 10.3934/amc.2012.6.329.
    [8] W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions, Edition 2.22, 2016.
    [9] A. T. Butson, Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Canad. J. Math., 15 (1963), 42-48.  doi: 10.4153/CJM-1963-005-3.
    [10] W. de LauneyD. L. Flannery and K. J. Horadam, Cocyclic Hadamard matrices and difference sets, Discret. Appl. Math., 102 (2002), 47-61.  doi: 10.1016/S0166-218X(99)00230-9.
    [11] J. F. Dillon, Some REALLY beautiful Hadamard matrices, Cryptogr. Commun., 2 (2010), 271-292.  doi: 10.1007/s12095-010-0031-1.
    [12] D. L. Flannery, Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra, 192 (1997), 749-779.  doi: 10.1006/jabr.1996.6949.
    [13] W. C. Huffman and  V. PlessFundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
    [14] N. Ito, On Hadamard groups, J. Algebra, 168 (1994), 981-987.  doi: 10.1006/jabr.1994.1266.
    [15] N. Ito, On Hadamard groups. II, J. Algebra, 169 (1994), 936-942.  doi: 10.1006/jabr.1994.1319.
    [16] N. Ito, On Hadamard groups. III, Kyushu J. Math., 51 (1997), 369-379.  doi: 10.2206/kyushujm.51.369.
    [17] R. G. Kraemer, Proof of a conjecture on Hadamard $2$-groups, J. Combin. Theory Ser. A, 63 (1993), 1-10.  doi: 10.1016/0097-3165(93)90012-W.
    [18] P. Ó Catháin and M. Röder, The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58 (2011), 73-88.  doi: 10.1007/s10623-010-9385-9.
    [19] K. T. PhelpsJ. Rifà and M. Villanueva, Hadamard codes of length $2^ts$ ($s$ odd). Rank and kernel, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., Springer, Berlin, 3857 (2006), 328-337.  doi: 10.1007/11617983_32.
    [20] J. Rifà, Circulant Hadamard matrices as HFP-codes of type $C_4n\times C_2$, preprint, arXiv: 1711.09373v1.
    [21] J. RifàJ. M. Basart and L. Huguet, On completely regular propelinear codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, Springer, Berlin, 357 (1989), 341-355.  doi: 10.1007/3-540-51083-4_71.
    [22] J. Rifà and E. Suárez Canedo, Hadamard full propelinear codes of type Q. Rank and kernel, Des. Codes Cryptogr., 86 (2018), 1905-1921.  doi: 10.1007/s10623-017-0429-2.
    [23] J. Rifà i Coma and E. Suárez Canedo, About a class of Hadamard propelinear codes, Conference on Discrete Mathematics and Computer Science, Electron. Notes Discret. Math. Elsevier Sci. B. V., Amsterdam, 46 (2014), 289-296.  doi: 10.1016/j.endm.2014.08.038.
    [24] H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14 Published by The Mathematical Association of America, New York, 1963. doi: 10.1017/S0013091500011299.
    [25] B. Schmidt, Williamson matrices and a conjecture of Ito's, Des. Codes Cryptogr., 17 (1999), 61-68.  doi: 10.1023/A:1008398319853.
    [26] R. J. Turyn, Character sums and difference sets, Pacific J. Math., 15 (1965), 319-346.  doi: 10.2140/pjm.1965.15.319.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(2193) PDF downloads(459) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return