[1]
|
A. Calderbank and W. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97.
|
[2]
|
E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Process, 25 (2008), 21-30.
|
[3]
|
X. W. Cao, J. F. Mi and S. D. Xu, Two constructions of approximately symmetric information complete positive operator-valued measures, J. Math. Phys, 58 (2017), 062201, 12pp.
doi: 10.1063/1.4985153.
|
[4]
|
X. W. Cao, W. Chou and X. Zhang, More constructions of near optimal codebooks associated with binary sequences, Adv. Math. Commun., 11 (2017), 187-202.
doi: 10.3934/amc.2017012.
|
[5]
|
J. H. Conway, R. H. Harding and N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, Exp. Math., 5 (1996), 139-159.
doi: 10.1080/10586458.1996.10504585.
|
[6]
|
P. Delsarte, J. M. Goethals and J. J. Seidel, Spherical codes and designs, Geometry and Combinatorics, (1991), 68-93.
doi: 10.1016/B978-0-12-189420-7.50013-X.
|
[7]
|
C. S. Ding, J. Q. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Ser. Coding Theory Cryptol, 4 (2008), 119-124.
doi: 10.1142/9789812832245_0009.
|
[8]
|
C. S. Ding, Complex codebooks from combinatorial designs, IEEE Trans. Inform. Theory, 52 (2006), 4229-4235.
doi: 10.1109/TIT.2006.880058.
|
[9]
|
C. S. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE Trans. Inform. Theory, 53 (2007), 4245-4250.
doi: 10.1109/TIT.2007.907343.
|
[10]
|
C. S. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inform. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886.
|
[11]
|
C. S. Ding, A construction of binary linear codes from Boolean functions, Discret. Math., 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029.
|
[12]
|
K. L. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861.
|
[13]
|
M. Fickus, D. G. Mixon and J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl., 436 (2012), 1014-1027.
doi: 10.1016/j.laa.2011.06.027.
|
[14]
|
T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854.
|
[15]
|
T. Helleseth and A. Kholosha, New binomial bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 56 (2010), 4646-4652.
doi: 10.1109/TIT.2010.2055130.
|
[16]
|
S. Hong, H. Park, T. Helleseth and Y. S. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE Trans. Inform. Theory, 60 (2014), 3698-3705.
doi: 10.1109/TIT.2014.2314298.
|
[17]
|
H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inform. Theory, 60 (2014), 1348-1355.
doi: 10.1109/TIT.2013.2292745.
|
[18]
|
V. I. Levenshtein, Bounds for packing of metric spaces and some of their applications, Probl. Cybern., 40 (1983), 43-110.
|
[19]
|
R. Lidl and H. Niederreiter, Finite Fields, Cambridge university press, 1997.
|
[20]
|
G. J. Luo, X. W. Cao, D. Xu and J. Mi, Binary linear codes with two or three weights from niho exponents, Cryptogr. Commun., 10 (2018), 301-318.
doi: 10.1007/s12095-017-0220-2.
|
[21]
|
J. L. Massey and T. Mittelholzer, Welch's bound and sequence sets for code-division multiple-access systems, Sequences II, Springer New York, (1993), 63–78.
|
[22]
|
J. M. Renes, R. Blume-Kohout, A. Scot and C. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys., 45 (2004), 2171-2180.
doi: 10.1063/1.1737053.
|
[23]
|
D. V. Sarwate, Meeting the Welch bound with equality, Sequences and their Applications, Springer London, (1999), 79–102.
|
[24]
|
T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257-275.
doi: 10.1016/S1063-5203(03)00023-X.
|
[25]
|
P. Tan, Z. C. Zhou and D. Zhang, A construction of codebooks nearly achieving the Levenshtein bound, IEEE Signal Processing Letters, 23 (2016), 1306-1309.
|
[26]
|
C. M. Tang, N. Li, Y. Qi and Z. C. Zhou, Linear codes with two or three weights from weakly regular bent functions, IEEE Trans. Inform. Theory, 62 (2016), 1166-1176.
doi: 10.1109/TIT.2016.2518678.
|
[27]
|
L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, 20 (1974), 397-399.
doi: 10.1109/TIT.1974.1055219.
|
[28]
|
W. Wootters and B. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys., 191 (1989), 363-381.
doi: 10.1016/0003-4916(89)90322-9.
|
[29]
|
P. Xia, S. Zhou and G. B. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory, 51 (2005), 1900-1907.
doi: 10.1109/TIT.2005.846411.
|
[30]
|
C. Xiang, C. S. Ding and S. Mesnager, Optimal codebooks from binary codes meeting the levenshtein bound, IEEE Trans. Inform. Theory, 61 (2015), 6526-6535.
doi: 10.1109/TIT.2015.2487451.
|
[31]
|
N. Y. Yu, A construction of codebooks associated with binary sequences, IEEE Trans. Inform. Theory, 58 (2012), 5522-5533.
doi: 10.1109/TIT.2012.2196021.
|
[32]
|
N. Y. Yu, K. Feng and A. X. Zhang, A new class of near-optimal partial Fourier codebooks from an almost difference set, Des. Codes Cryptogr., 71 (2014), 493-501.
doi: 10.1007/s10623-012-9753-8.
|
[33]
|
A. X. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, IEEE Trans. Inform. Theory, 58 (2012), 2507-2511.
doi: 10.1109/TIT.2011.2176531.
|
[34]
|
A. X. Zhang and K. Feng, Construction of cyclotomic codebooks nearly meeting the Welch bound, Des. Codes Cryptogr., 63 (2012), 209-224.
doi: 10.1007/s10623-011-9549-2.
|
[35]
|
Z. C. Zhou, C. S. Ding and N. Li, New families of codebooks achieving the Levenshtein bound, IEEE Trans. Inf. Theory, 60 (2014), 7382-7387.
doi: 10.1109/TIT.2014.2353052.
|
[36]
|
Z. C. Zhou and X. H. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521-527.
doi: 10.3934/amc.2011.5.521.
|
[37]
|
Z. C. Zhou, N. Li, C. L. Fan and T. Helleseth, Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptor., 81 (2016), 283-295.
doi: 10.1007/s10623-015-0144-9.
|